Читать книгу Smart Solar PV Inverters with Advanced Grid Support Functionalities - Rajiv K. Varma - Страница 55

References

Оглавление

1 1 International Renewable Energy Agency (IRENA) (2019). Global Energy Transformation – A Roadmap to 2050. International Renewable Energy Agency (IRENA) Report.

2 2 Tan, J., Zhang, Y., You, S., Liu, Y., and Liu, Y. (2018). Frequency response study of U.S. Western interconnection under extra‐high photovoltaic generation penetrations. In Proc. 2018 IEEE Power & Energy Society General Meeting, 1–5.

3 3 TenneT TSO GmbH (2020). The Massive InteGRATion of Power Electronic Devices (MIGRATE). Bayreuth, Germany, Technical Brief.

4 4 CEATI International Inc. (2017). Mitigation of the Negative Impacts of Solar and Wind DG Connections in Distribution Systems. Montreal, QC: CEATI Rep. No. T164700 #50/134.

5 5 Moeini, A. and Kamwa, I. (2016). Analytical concepts for reactive power based primary frequency control in power systems. IEEE Transactions on Power Systems 31: 4217–4230.

6 6 Farrokhabadi, M., Cañizares, C.A., and Bhattacharya, K. (2017). Frequency control in isolated/islanded microgrids through voltage regulation. IEEE Transactions on Smart Grid 8: 1185–1194.

7 7 Carvalho, P.M.S., Correia, P.F., and Ferreira, L.A.F.M. (2008). Distributed reactive power generation control for voltage rise mitigation in distribution networks. IEEE Transactions on Power Systems 23: 766–772.

8 8 Eto, J., Undrill, J., Mackin, P. et al. (2010). Use of a Frequency Response Metric to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation. Berkeley, CA: Lawrence Berkeley National Laboratory Rep. No. LBNL‐4142E.

9 9 NERC (2020). Fast Frequency Response Concepts and Bulk Power System Reliability Needs. Atlanta, GA: NERC NERC Inverter‐Based Resource Performance Task Force (IRPTF) White Paper.

10 10 NREL (2013). Variable Renewable Generation can Provide Balancing Control to the Electric Power System. Denver, CO: NREL Rep. NREL/FS‐5500‐57820.

11 11 EPRI (2019). Implications of Reduced Inertia Levels on the Electricity System. EPRI, Palo Alto, CA Rep. No. 3002015132.

12 12 EPRI (2019). Implications of Reduced Inertia Levels on the Electricity System. EPRI, Palo Alto, CA, USA, Techn. Update Rep. 3002014970.

13 13 EPRI (2019). Meeting the Challenges of Declining System Inertia. EPRI, Palo Alto, CA, USA, White Paper.

14 14 Eto, J.H., Undrill, J., Mackin, P., and Ellis, J. (2018). Frequency Control Requirements for Reliable Interconnection Frequency Response. Berkeley, CA: Lawrence Berkeley National Laboratory Rep. No. LBNL‐2001103.

15 15 Miller, N., Lew, D., Piwko, R. et al. (2017). Technology capabilities for fast frequency response. Report prepared by GE Energy Consulting for Australian Energy Market Operator, Schenectady, NY, USA.

16 16 IEEE (2018). Impact of Inverter Based Generation on Bulk Power System Dynamics and Short‐Circuit Performance. IEEE/NERC Task Force on Short‐Circuit and System Performance Impact of Inverter Based Generation, New York, NY, USA, IEEE PES Techn. Report. PES‐TR68.

17 17 AEMO (2017). Fast frequency response in the NEM‐Working paper. Australian Energy Market Operator, Australia. Report.

18 18 International Energy Agency (2014). High Penetration of PV in Local Distribution Grids: Subtask 2: Case Study Collection. International Energy Agency PVPS Program, Rep. IEA PVPS T14‐02.

19 19 Stetz, T., Marten, F., and Braun, M. (2013). Improved low voltage grid‐integration of photovoltaic systems in Germany. IEEE Transactions on Sustainable Energy 4: 534–542.

20 20 Walling, R.A., Saint, R., Dugan, R.C. et al. (2008). Summary of distributed resources impact on power delivery systems. IEEE Transactions on Power Delivery 23: 1636–1644.

21 21 Katiraei, F. and Aguero, J.R. (2011). Solar PV integration challenges. IEEE Power and Energy Magazine 9: 62–71.

22 22 Coster, E.J., Myrzik, J.M.A., Kruimer, B., and Kling, W.L. (2011). Integration issues of distributed generation in distribution grids. Proceedings of the IEEE 99: 28–39.

23 23 Katiraei, F., Sun, C., and Enayati, B. (2015). No inverter left behind: protection, controls, and testing for high penetrations of PV inverters on distribution systems. IEEE Power and Energy Magazine 13: 43–49.

24 24 Cheng, D., Mather, B.A., Seguin, R. et al. (2016). Photovoltaic (PV) impact assessment for very high penetration levels. IEEE Journal of Photovoltaics 6: 295–300.

25 25 Obi, M. and Bass, R. (2016). Trends and challenges of grid‐connected photovoltaic systems – a review. Renewable and Sustainable Energy Reviews 58: 1082–1094.

26 26 Bravo, R.J., Salas, R., Bialek, T., and Sun, C. (2015). Distributed energy resources challenges for utilities. In Proc. 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 1–5.

27 27 Seguin, R., Woyak, J., Costyk, D., Hambrick, J., and Mather, B. (2016). High‐Penetration PV Integration Handbook for Distribution Engineers. NREL, Golden, CO, USA, Techn. Rep. NREL/TP‐5D00‐63114.

28 28 Masters, C.L. (2002). Voltage rise: the big issue when connecting embedded generation to long 11 kV overhead lines. Power Engineering Journal 16: 5–12.

29 29 Zandt, D.V. (2019). Applications of DER advanced functions and settings. In Proc. ITWG Meeting, 26 June.

30 30 (2016). Electric power systems and equipment—voltage ratings (60 Hz). ANSI C84.1‐2016 Standard.

31 31 Hingorani, N.G. and Gyugyi, L. (1999). Understanding FACTS. Piscataway, NJ: IEEE Press.

32 32 Mathur, R.M. and Varma, R.K. (2002). Thyristor‐Based FACTS Controllers for Electrical Transmission Systems. New York: Wiley‐IEEE Press.

33 33 EPRI (2015). YouTube Video – EPRI High Penetration Solar Impacts. EPRI.

34 34 EPRI (2015). YouTube Video – Solar PV Impacts to Distribution Feeder. EPRI.

35 35 Varma, R.K., Rahman, S.A., Mahendra, A.C., Seethapathy, R., and Vanderheide, T. (2012). Novel nighttime application of PV solar farms as STATCOM (PV‐STATCOM). In Proc. 2012 IEEE Power & Energy Society General Meeting, 1–8.

36 36 EPRI (2016). Common Functions for Smart Inverters, 4e. EPRI, Palo Alto, CA. Techn. Rep. 3002008217.

37 37 Chen, L., Qi, S., and Li, H. (2012). Improved adaptive voltage controller for active distribution network operation with distributed generation. In Proc. 47th International Universities Power Engineering Conference (UPEC ‘12).

38 38 Foster, S., Xu, L., and Fox, B. (2006). Grid integration of wind farms using SVC and STATCOM. In Proc. 41st International Universities Power Engineering Conference, 157–161.

39 39 Ronner, B., Maibach, P., and Thurnherr, T. (2009). Operational experiences of STATCOMs for wind parks. IET Renewable Power Generation 3: 349–357.

40 40 Han, C., Huang, A.Q., Baran, M.E. et al. (2008). STATCOM impact study on the integration of a large wind farm into a weak loop power system. IEEE Transactions on Energy Conversion 23: 226–233.

41 41 Lahaçani, N.A., Aouzellag, D., and Mendil, B. (2010). Contribution to the improvement of voltage profile in electrical network with wind generator using SVC device. Renewable Energy 35: 243–248.

42 42 (2013). Distributed Generation Technical Interconnection Requirements. Hydro One Networks Inc. Rep. DT‐10‐015 R3.

43 43 Nelson, A., Hoke, A., Chakraborty, S. et al., (2015). Inverter Load Rejection Over‐Voltage Testing – Solar City CRADA Task 1a Final Report. NREL, Golden, CO, USA, Techn. Rep. NREL/TP‐5D00‐63510.

44 44 Hoke, A., Nelson, A., Chakraborty, S. et al. (2015). Inverter Ground Fault Overvoltage Testing. NREL, Golden, CO, USA, Techn. Rep. NREL/TP‐5D00‐64173.

45 45 Boynuegri, A.R., Vural, B., and Tascikaraoglu, A. (2012). Voltage regulation capability of a prototype Static VAr Compensator for wind applications. Applied Energy 93: 422–431.

46 46 Ching‐Yin, L. (1999). Effects of unbalanced voltage on the operation performance of a three‐phase induction motor. IEEE Transactions on Energy Conversion 14: 202–208.

47 47 (2018). IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces. IEEE Std 1547‐2018 (Revision of IEEE Std 1547‐2003).

48 48 Shahnia, F., Majumder, R., Ghosh, A.1, Ledwich, G., and Zare, F. (2010). Sensitivity analysis of voltage imbalance in distribution networks with rooftop PVs. In Proc. 2010 IEEE PES General Meeting, 1–8.

49 49 Reiman, A.P., McDermott, T.E., Reed, G.F., and Enayati, B. (2015). Guidelines for high penetration of single‐phase PV on power distribution systems. In Proc. 2015 IEEE Power & Energy Society General Meeting, 1–5.

50 50 Bird, L., Milligan, M., and Lew, D. (2013). Integrating Variable Renewable Energy: Challenges and Solutions. NREL, Golden, CO, USA, Techn. Rep. NREL/TP‐6A20‐60451.

51 51 (2016). What the duck curve tells us about managing a green grid. https://www.caiso.com/Documents/FlexibleResourcesHelpRenewables_FastFacts.pdf (accessed 08 February 2020).

52 52 (2017). Confronting the duck curve: how to address over‐generation of solar energy. https://www.energy.gov/eere/articles/confronting‐duck‐curve‐how‐address‐over‐generation‐solar‐energy (accessed 08 February 2020).

53 53 Kraiczy, M., Wang, H., Schmidt, S. et al. (2018). Reactive power management at the transmission–distribution interface with the support of distributed generators – a grid planning approach. IET Generation, Transmission & Distribution 12: 5949–5955.

54 54 Hoff, T. and Shugar, D.S. (1995). The value of grid‐support photovoltaics in reducing distribution system losses. IEEE Transactions on Energy Conversion 10: 569–576.

55 55 Hung, D.Q. and Mithulananthan, N. (2013). Multiple distributed generator placement in primary distribution networks for loss reduction. IEEE Transactions on Industrial Electronics 60: 1700–1708.

56 56 S. K. Solanki, V. Ramachandran, and J. Solanki (2012). Steady state analysis of high penetration PV on utility distribution feeder. In Proc. IEEE PES T&D Conference and Exposition, 1–6.

57 57 Enslin, J.H.R. and Heskes, P.J.M. (2004). Harmonic interaction between a large number of distributed power inverters and the distribution network. IEEE Transactions on Power Electronics 19: 1586–1593.

58 58 (2014). IEEE recommended practice and requirements for harmonic control in electric power systems. IEEE Std 519‐2014 (Revision of IEEE Std 519‐1992).

59 59 Arrillaga, J. and Watson, N.R. (2003). Power System Harmonics. New York: Wiley.

60 60 Bradt, M., Badrzadeh, B., Camm, E. et al. (2011). Harmonics and resonance issues in wind power plants. In Proc. 2011 IEEE Power & Energy Society General Meeting, 1–8.

61 61 CEATI International Inc. (2016). Analysis of Parallel and Series Resonance on the Electrical Distribution System. CEATI, Montreal, QC, Canada, Rep. No. T154700 #5171.

62 62 Varma, R.K., Berge, J., Axente, I., Sharma, V., and Walsh, K. (2012). Determination of maximum PV solar system connectivity in a utility distribution feeder. In Proc. 2012 IEEE PES T&D Conference and Exposition, 1–8.

63 63 NERC (2019). Improvements to Interconnection Requirements for BPS‐Connected Inverter‐Based Resources. NERC, Atlanta, GA, USA, Reliability Guideline.

64 64 Pan, Y., Ren, W., Ray, S., Walling, R., and Reichard, M. (2011). Impact of inverter interfaced distributed generation on overcurrent protection in distribution systems. In Proc. 2011 IEEE Power Engineering and Automation Conference, 371–376.

65 65 Margossian, H., Capitanescu, F., and Sachau, J. (2013). Feeder protection challenges with high penetration of inverter based distributed generation. In Proc. 2013 EUROCON, 1369–1374.

66 66 Ko, A.D., Burt, G.M., Galloway, S. et al. (2007). UK distribution system protection issues. IET Generation, Transmission & Distribution 1: 679–687.

67 67 Short, T.A. (2003). Electric Power Distribution Handbook. Boca Raton, FL: CRC Press.

68 68 Sa'ed, J.A., Favuzza, S., Ippolito, M.G., and Massaro, F. (2013). Investigating the effect of distributed generators on traditional protection in radial distribution systems. In Proc. 2013 IEEE Grenoble Conference, 1–6.

69 69 Mahadanaarachchi, V.P. and Ramakumar, R. (2008). Impact of distributed generation on distance protection performance – a review. In Proc. 2008 IEEE Power & Energy Society General Meeting, 1–7.

70 70 NERC (2017). Integrating Inverter‐based Resources into Low Short Circuit Strength Systems. NERC, Atlanta, GA, USA, Reliability Guideline.

71 71 Jafari, M., Olowu, T.O., Sarwat, A.I., and Rahman, M.A. (2019). Study of smart grid protection challenges with high photovoltaic penetration. In Proc. 2019 North American Power Symposium, 1–6.

72 72 Johnston, W. and Katiraei, F. (2012). Impact and sensitivity studies of PV inverters contribution to faults based on generic PV inverter models – Ontario Grid Connection Study, Canadian Solar Industries Association Report.

73 73 Kou, G., Chen, L., VanSant, P. et al. (2020). Fault characteristics of distributed solar generation. IEEE Transactions on Power Delivery 35: 1062–1064.

74 74 Marchesoni, M., Marinopoulos, A., Massucco, S., and Picco, V. (2012). High penetration of very large scale PV Systems into the European electric network. In Proc. 2012 IEEE International Energy Conference and Exhibition (ENERGYCON), 658–662.

75 75 Nimpitiwan, N., Heydt, G.T., Ayyanar, R., and Suryanarayanan, S. (2007). Fault current contribution from synchronous machine and inverter based distributed generators. IEEE Transactions on Power Delivery 22: 634–641.

76 76 Baran, M.E. and El‐Markaby, I. (2005). Fault analysis on distribution feeders with distributed generators. IEEE Transactions on Power Systems 20: 1757–1764.

77 77 Brahma, S.M. and Girgis, A.A. (2004). Development of adaptive protection scheme for distribution systems with high penetration of distributed generation. IEEE Transactions on Power Delivery 19: 56–63.

78 78 Bravo, R.J., Yinger, R., and Robles, S. (2013). Three phase solar photovoltaic inverter testing. In Proc. 2013 IEEE Power & Energy Society General Meeting, 1–5.

79 79 Hooshyar, H. and Baran, M.E. (2013). Fault analysis on distribution feeders with high penetration of PV systems. IEEE Transactions on Power Systems 28: 2890–2896.

80 80 Dalal, S.B., Knuth, W., Gaun, A., and Grisenti, A. (2018). Fault current mitigation using 550 kV air core reactors. In Proc. 2018 IEEE PES T&D Conference and Exposition, 1–9.

81 81 Ohrstrom, M. and Soder, L. (2011). Fast protection of strong power systems with fault current limiters and PLL‐aided fault detection. IEEE Transactions on Power Delivery 26: 1538–1544.

82 82 McGranaghan, M., Ortmeyer, T., Crudele, D. (2008). Renewable Systems Interconnection Study: Advanced Grid Planning and Operations. Sandia National Laboratories, Albuquerque, NM, USA, Rep. SAND2008‐0944 P.

83 83 Ye, Z., Walling, R., Garces, L., et al. (2004). Study and Development of Anti‐Islanding Control for Grid‐Connected Inverters. NREL, Golden, CO, USA, Techn. Rep. NREL/SR‐560‐36243.

84 84 John Sundar, D. and Kumaran, M.S. (2015). A comparative review of islanding detection schemes in distributed generation systems. International Journal of Renewable Energy Research 5: 1016–1023.

85 85 Kundur, P. (1994). Power System Stability and Control. New York: McGraw‐Hill.

86 86 Achilles, S., Schramm, S., and Bebic, J. (2008). Transmission System Performance Analysis for High‐Penetration Photovoltaics. NREL, Golden, CO, USA, Rep. NREL/SR‐581‐42300.

87 87 Eftekharnejad, S., Vittal, V., Heydt, G.T. et al. (2013, 2013). Small signal stability assessment of power systems with increased penetration of photovoltaic generation: a case study. IEEE Transactions on Sustainable Energy 4: 960–967.

88 88 Tamimi, B., Cañizares, C., and Bhattacharya, K. (2013). System stability impact of large‐scale and distributed solar photovoltaic generation: the case of Ontario, Canada. IEEE Transactions on Sustainable Energy 4: 680–688.

89 89 Miller, N.W., Shao, M., Pajic, S., and D’Aquila, R. (2014). Western Wind and Solar Integration Study Phase 3 – Frequency Response and Transient Stability: Executive Summary. NREL, Golden, CO, USA, Rep. NREL/SR‐5D00‐62906‐ES.

90 90 E.ON Netz GmbH (2006). Grid Code for High and Extra High Voltage. E.ON Netz GmbH, Bayreuth, Germany.

91 91 (2013). Technical Guideline: Generating Plants Connected to the Medium‐Voltage Network. (Guideline for generating plants’ connection to and parallel operation with the medium‐voltage network), BDEW (Bundesverband der Energie‐ und Wasserwirtschaft e.V.), Berlin, Germany, June 2008, revised January 2013.

92 92 Varma, R.K., Khadkikar, V., and Seethapathy, R. (2009). Nighttime application of PV solar farm as STATCOM to regulate grid voltage. IEEE Transactions on Energy Conversion (Letters) 24: 983–985.

93 93 EPRI (2010). Smart Inverter Functionality Survey: A State‐of‐the‐Industry Assessment. EPRI, Palo Alto, CA, USA, Techn. Update, Rep. No. 1022239.

94 94 Casey, L.F., Schauder, C., Cleary, J., and Ropp, M. (2010). Advanced inverters facilitate high penetration of renewable generation on medium voltage feeders – impact and benefits for the utility. In Proc. 2010 IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply, 86–93.

95 95 Walling, R.A. and Clark, K. (2010). Grid support functions implemented in utility‐scale PV systems. In Proc. 2010 IEEE PES T&D Conference and Exposition, 1–5.

96 96 Albuquerque, F.L., Moraes, A.J., Guimaraes, G.C. et al. (2010). Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator. Solar Energy 84: 1310–1317.

97 97 Varma, R.K., Rahman, S.A., and Seethapathy, R. (2010). Novel control of grid connected photovoltaic (PV) solar farm for improving transient stability and transmission limits both during night and day. In Proc. 2010 World Energy Conference, Montreal, Canada.

98 98 Boemer, J.C., Burges, K., Zolotarev, P. et al. (2011). Overview of German grid issues and retrofit of photovoltaic power plants in Germany for the prevention of frequency stability problems in abnormal system conditions of the ENTSO‐E region continental Europe. Presented at the First International Workshop on Integration of Solar Power into Power Systems, Aarhus, Denmark, October.

99 99 Smart Inverter Working Group (2019). https://www.cpuc.ca.gov/General.aspx?id=4154#:~:text=The%20Smart%20Inverter%20Working%20Group,distributed%20energy%20resources%20(DERs) (accessed 08 February 2020).

100 100 Varma, R.K., Das, B., Axente, I., and Vanderheide, T. (2011). Optimal 24‐hr utilization of a PV solar system as STATCOM (PV‐STATCOM) in a distribution network. In Proc. 2011 IEEE Power & Energy Society General Meeting, 1–8.

Smart Solar PV Inverters with Advanced Grid Support Functionalities

Подняться наверх