Читать книгу Complications in Canine Cranial Cruciate Ligament Surgery - Ron Ben-Amotz - Страница 41

References

Оглавление

1 1. Turk, R., Singh, A., and Weese, J.S. (2015). Prospective surgical site infection surveillance in dogs. Vet. Surg. 44: 2–8.

2 2. Eugster, S., Schawalder, P., Gaschen, F., and Boerlin, P. (2004). A prospective study of postoperative surgical site infections in dogs and cats. Vet. Surg. 33: 542–550.

3 3. Nicholson, M., Beal, M., Shofer, F., and Brown, D.C. (2002). Epidemiologic evaluation of postoperative wound infection in clean‐contaminated wounds: a retrospective study of 239 dogs and cats. Vet. Surg. 31: 577–581.

4 4. Fitzpatrick, N. and Solano, M.A. (2010). Predictive variables for complications after TPLO with stifle inspection by arthrotomy in 1000 consecutive dogs. Vet. Surg. 39: 460–474.

5 5. Beal, M.W., Brown, D.C., and Shofer, F. (2000). The effects of perioperative hypothermia and the duration of anesthesia on postoperative wound infection rate in clean wounds: a retrospective study. Vet. Surg. 29: 123–127.

6 6. Frey, T.N., Hoelzler, M.G., Scavelli, T.D. et al. (2010). Risk factors for surgical site infection‐inflammation in dogs undergoing surgery for rupture of the cranial cruciate ligament: 902 cases (2005–2006). J. Am. Vet. Med. Assoc. 236 (1): 88–94.

7 7. Vasseur, P.B., Levy, J., Dowd, E., and Eliot, J. (1988). Surgical wound infection rates in dogs and cats: data from a teaching hospital. Vet. Surg. 17 (2): 60–64.

8 8. Aiken, M.J., Hughes, T.K., Abercromby, R.H. et al. (2015). Prospective, randomized comparison of the effect of two antimicrobial regimes on surgical site infection rate in dogs undergoing orthopedic implant surgery. Vet. Surg. 44: 661–667.

9 9. Pratesi, A., Moores, A.P., Downes, C. et al. (2015). Efficacy of postoperative antimicrobial use for clean orthopedic implant surgery in dogs: a prospective randomized study in 100 consecutive cases. Vet. Surg. 44: 653–660.

10 10. Casale, S.A. and McCarthy, R.J. (2009). Complications associated with lateral fabellotibial suture surgery for cranial cruciate ligament injury in dogs: 363 cases (1997‐2005). J. Am. Vet. Med. Assoc. 234: 229–235.

11 11. Dulisch, M. (1981). Suture reaction following extra‐articular stabilization in the dog. Part II: a prospective study of 66 stifles. J. Am. Anim. Hosp. Assoc. 17: 572–574.

12 12. Rappa, N.S. and Radasch, R.M. (2016). Post‐operative complications associated with the Arthrex Canine Cranial Cruciate Ligament Repair Anchor System in small‐ to medium‐sized dogs: a retrospective analysis (2009–2012). Can. J. Vet. Res. 57: 847–852.

13 13. Nazarali, A., Singh, A., and Weese, J.S. (2014). Perioperative administration of antimicrobials during tibial plateau leveling osteotomy. Vet. Surg. 43: 966–971.

14 14. Clark, A.C., Greco, J.J., and Bergman, P.J. (2020). Influence of administration of antimicrobial medications after tibial plateau leveling osteotomy on surgical site infections: a retrospective study of 308 dogs. Vet. Surg. 49: 106–113.

15 15. Wolf, R.E., Scavelli, T.D., Hoelzler, M.G. et al. (2012). Surgical and postoperative complications associated with tibial tuberosity advancement for cranial cruciate ligament rupture in dogs: 458 cases (2007–2009). J. Am. Vet. Med. Assoc. 240 (12): 1481–1487.

16 16. Yap, F.W., Calvo, I., Smith, K.D., and Parkin, T. (2015). Perioperative risk factors for surgical site infection in tibial tuberosity advancement: 224 stifles. Vet. Comp. Orthop. Traumatol. 28: 199–206.

17 17. Costa, M., Craig, D., Cambridge, T. et al. (2017). Major complications of tibial tuberosity advancement in 1613 dogs. Vet. Surg. 46: 494–500.

18 18. Serratore, V.R. and Barnhart, M.D. (2018). Results and complications after removal of tibial tuberosity advancement cage for treatment of surgical site infections: a retrospective study. Vet. Surg. 47: 768–773.

19 19. Tuan, J., Solano, M.A., and Danielski, A. (2019). Risk of infection after double locking plate and screw fixation of tibial plateau leveling osteotomies in dogs weighing greater than 50 kilograms. Vet. Surg. 48: 1211–1217.

20 20. Watson, F.C., McMullan, W., Jordan, C.J. et al. (2019). The use of absorbable staples for skin closure after tibial plateau leveling osteotomy. Vet. Surg. 48: 35–41.

21 21. Nazarali, A., Singh, A., Moens, N.M.M. et al. (2015). Association between methicillin‐resistant Staphylococcus pseudintermedius carriage and the development of surgical site infections following tibial plateau leveling osteotomy in dogs. J. Am. Vet. Med. Assoc. 247 (8): 909–916.

22 22. Hans, E.C., Barnhart, M.D., Kennedy, S.C., and Naber, S.J. (2017). Comparison of complications following tibial tuberosity advancement and tibial plateau levelling osteotomy in very large and giant dogs 50 kg or more in body weight. Vet. Comp. Orthop. Traumatol. 30: 299–305.

23 23. Brown, G., Maddox, T., and Siles, M.M.B. (2016). Client‐assessed long‐term outcome in dogs with surgical site infection following tibial plateau levelling osteotomy. Vet. Rec. 179: 409.

24 24. Livet, V., Taroni, M., Ferrand, F.‐X. et al. (2019). Modified triple tibial osteotomy for combined cranial cruciate ligament rupture, tibial deformities, or patellar luxation. J. Am. Anim. Hosp. Assoc. 55: 291–300.

25 25. Frederick, S.W. and Cross, A.R. (2017). Modified cranial closing wedge osteotomy for treatment of cranial cruciate ligament insufficiency in dogs with excessive tibial plateau angles: technique and complications in 19 cases. Vet. Surg. 46: 403–411.

26 26. De Sousa, R., Egan, P., Parsons, K. et al. (2017). Treatment of tibial diaphyseal fractures following plateless tibial tuberosity advancement to manage cranial cruciate disease. J. Small Anim. Pract. 58: 372–379.

27 27. Lopez, D.J., VanDeventer, G.M., Krotscheck, U. et al. (2018). Retrospective study of factors associated with surgical site infection in dogs following tibial plateau leveling osteotomy. J. Am. Vet. Med. Assoc. 253 (3): 315–321.

28 28. Giannetto, J.J. and Aktay, S.A. (2019). Prospective evaluation of surgical wound dressings and the incidence of surgical site infections in dogs undergoing a tibial plateau levelling osteotomy. Vet. Comp. Orthop. Traumatol. 32: 18–25.

29 29. Spencer, D.D. and Daye, R.M. (2018). A prospective, randomized, double‐blinded, placebo‐controlled clinical study on postoperative antibiotherapy in 150 arthroscopy‐assisted tibial plateau leveling osteotomies in dogs. Vet. Surg. 47: E79–E87.

30 30. Atwood, C., Maxwell, M., Butler, R., and Wills, R. (2015). Effects of incision closure method on infection prevalence following tibial plateau leveling osteotomy in dogs. Can. Vet. J. 56: 375–381.

31 31. Savicky, R., Beale, B., Murtaugh, R. et al. (2013). Outcome following removal of TPLO implants with surgical site infection. Vet. Comp. Orthop. Traumatol. 26: 260–265.

32 32. Etter, S.W., Ragetly, G.R., Bennett, R.A., and Schaeffer, D.J. (2013). Effect of using triclosan‐impregnated suture for incisional closure on surgical site infection and inflammation following tibial plateau leveling osteotomy in dogs. J. Am. Vet. Med. Assoc. 242: 355–358.

33 33. Gallagher, A.D. and Mertens, W.D. (2012). Implant removal rate from infection after tibial plateau leveling osteotomy in dogs. Vet. Surg. 41: 705–711.

34 34. Thompson, A.M., Bergh, M.S., Wang, C., and Wells, K. (2011). Tibial plateau levelling osteotomy implant removal: a retrospective analysis of 129 cases. Vet. Comp. Orthop. Traumatol. 24: 450–456.

35 35. van Rijen, M., Bonten, M., Wenzel, R., and Kluytmans, J. (2008). Intranasal mupirocin for reduction of Staphylococcus aureus infections in surgical patients with nasal carriage: a systematic review. J. Antimicrob. Chemother. 61 (2): 254–261.

36 36. Thompson, P. and Houston, S. (2013). Decreasing methicillin‐resistant Staphylococcus aureus surgical site infections with chlorhexidine and mupirocin. Am. J. Infect. Control. 41 (7): 629–633.

37 37. Rao, N., Cannella, B., Crossett, L. et al. (2011). Preoperative screening/decolonization for Staphylococcus aureus to prevent orthopedic surgical site infection: prospective cohort study with 2‐year follow‐up. J. Arthroplasty 26 (8): 1501–1507.

38 38. Courville, X., Tomek, I., Kirkland, K. et al. (2012). Cost‐effectiveness of preoperative nasal mupirocin treatment in preventing surgical site infection in patients undergoing total hip and knee arthroplasty: a cost‐effectiveness analysis. Infect. Control Hosp. Epidemiol. 33 (2): 152–159.

39 39. Diribe, O., Thomas, S., AbuOun, M. et al. (2015). Genotypic relatedness and characterization of Staphylococcus pseudintermedius associated with post‐operative surgical infections in dogs. J. Med. Microbiol. 64: 1074–1081.

40 40. Borio, S., Colombo, S., La Rosa, G. et al. (2015). Effectiveness of a combined (4% chlorhexidine digluconate shampoo and solution) protocol in MRS and non‐MRS canine superficial pyoderma: a randomized, blinded, antibiotic‐controlled study. Vet. Dermatol. 26: 339–e72.

41 41. Mayhew, P.D., Freeman, L., Kwan, T., and Brown, D.C. (2012). Comparison of surgical site infection rates in clean and clean‐contaminated wounds in dogs and cats after minimally invasive versus open surgery: 179 cases (2007–2008). J. Am. Vet. Med. Assoc. 240 (2): 193–198.

42 42. Brown, D.C., Conzemius, M., Shofer, F., and Swann, H. (1997). Epidemiologic evaluation of postoperative wound infections in dogs and cats. J. Am. Vet. Med. Assoc. 210 (9): 1302–1306.

43 43. Berrios‐Torres, S., Umscheid, C., Bratzler, D. et al. (2017). Centers for Disease Control and Prevention guideline for the prevention of surgical site infection. J. Am. Med. Assoc. Surg. 152 (8): 784–791.

44 44. World Health Organization (2016). Global Guidelines for the Prevention of Surgical Site Infection. Geneva: WHO.

45 45. Belo, L., Serrano, I., Cunha, E. et al. (2018). Skin asepsis protocols as a preventive measure of surgical site infections in dogs: chlorhexidine – alcohol versus povidone‐iodine. BMC Vet. Res. 14 (95): 1–6.

46 46. Melekwe, G.O., Uwagie‐Ero, E.A., Zoaka, H.A., and Odigie, E.A. (2018). Comparative clinical effectiveness of preoperative skin antiseptic preparations of chlorhexidine gluconate and povidone iodine for preventing surgical site infections in dogs. Int. J. Vet. Sci. Med. 6 (1): 113–116.

47 47. Andrade, N., Schmiedt, C.W., Cornell, K. et al. (2016). Survey of intraoperative bacterial contamination in dogs undergoing elective orthopedic surgery. Vet. Surg. 45: 214–222.

48 48. Straw, R.C., Tomlinson, J.L., and Fales, W.H. (1987). Scalpel blade contamination with skin bacteria during orthopedic and neurosurgical procedures in dogs. Vet. Surg. 16: 25–30.

49 49. Lioce, C.G., Davis, E.C., Bennett, J.W. et al. (2019). Scalpel blade contamination and risk of postoperative surgical site infection following abdominal incisions in dogs. BMC Res. Notes 12: 459.

50 50. Belo, L., Serrano, I., Cunha, E. et al. (2020). Surgical blades as bacteria dissemination vehicles in dogs undergoing surgery −a pilot study. Biomed. Eng. Int. 2 (1): 25–29.

51 51. Sturgeon, C., Lamport, A.I., Lloyd, D.H., and Muir, P. (2000). Bacterial contamination of suction tips used during surgical procedures performed on dogs and cats. Am. J. Vet. Res. 61 (7): 779–783.

52 52. Medl, N., Guerrero, T.G., Holzle, L. et al. (2012). Intraoperative contamination of the suction tip in clean orthopedic surgeries in dogs and cats. Vet. Surg. 41: 254–260.

53 53. Weese, J.S. (2008). A review of post‐operative infections in veterinary orthopaedic surgery. Vet. Comp. Orthop. Traumatol. 21: 99–105.

54 54. Feßler, A.T., Schuenemann, R., Kadlec, K. et al. (2018). Methicillin‐resistant Staphylococcus aureus (MRSA) and methicillin‐resistant Staphylococcus pseudintermedius (MRSP) among employees and in the environment of a small animal hospital. Vet. Microbiol. 221: 153–158.

55 55. Larson, E. (1995). APIC guidelines for handwashing and hand antisepsis in health care settings. Am. J. Infect. Control 23 (4): 251–269.

56 56. Verwilghen, D.R., Mainil, J., Mastrocicco, E. et al. (2011). Surgical hand antisepsis in veterinary practice: evaluation of soap scrubs and alcohol based rub techniques. Vet. J. 190 (3): 372–377.

57 57. Parienti, J.J., Thibon, P., Heller, R. et al. (2002). Hand‐rubbing with an aqueous alcoholic solution vs traditional surgical hand‐scrubbing and 30‐day surgical site infection rates. J. Am. Med. Assoc. 288 (6): 722–727.

58 58. Hingst, V., Juditzki, I., Heeg, P., and Sonntag, H.‐G. (1992). Evaluation of the efficacy of surgical hand disinfection following a reduced application time of 3 instead of 5 minutes. J. Hosp. Infect. 20 (2): 79–86.

59 59. Verwilghen, D. and Kampf, G. (2016). Letter to the editor: antibacterial efficacy of several surgical hand preparation products used by veterinary students. Vet. Surg. 45: 1118–1119.

60 60. Hübner, N., Kampf, G., Kamp, P. et al. (2006). Does a preceding hand wash and drying time after surgical hand disinfection influence the efficacy of a propanol‐based hand rub? BMC Microbiol. 6: 57.

61 61. Widmer, A.F., Rotter, M., Voss, A. et al. (2010). Surgical hand preparation: state‐of‐the‐art. J. Hosp. Infect. 74 (2): 112–122.

62 62. Meakin, L.B., Gilman, O.P., Parsons, K.J. et al. (2016). Colored indicator undergloves increase the detection of glove perforations by surgeons during small animal orthopedic surgery: a randomized controlled trial. Vet. Surg. 45: 709–714.

63 63. Hayes, G.M., Reynolds, D., Moens, N.M.M. et al. (2014). Investigation of incidence and risk factors for surgical glove perforation in small animal surgery. Vet. Surg. 43: 400–404.

64 64. Stine, S.L., Odum, S.M., and Daniel Mertens, W. (2018). Protocol changes to reduce implant‐associated infection rate after tibial plateau leveling osteotomy: 703 dogs, 811 TPLO (2006–2014). Vet. Surg. 47: 481–489.

65 65. Boothe, H.W. (2017). Instrument and tissue handling techniques. In: Veterinary Surgery, 2e (eds. S.A. Johnston and K.M. Tobias), 733. St Louis, MO: Elsevier.

66 66. Cadman, C. (2016). The impact of surgical safety checklists on theatre departments: a critical review of the literature. J. Perioper. Pract. 26 (4): 62–71.

67 67. Haynes, A., Weiser, T., Berry, W. et al. (2009). A surgical safety checklist to reduce morbidity and mortality in a global population. N. Engl. J. Med. 360: 491–499.

68 68. Verwilghen, D. and Singh, A. (2015). Fighting surgical site infections in small animals: are we getting anywhere? Vet. Clin. North Am. Small Anim. Pract. 45 (2): 243–276.

69 69. Gatineau, M., El‐warrak, A.O., Bolliger, C. et al. (2012). Effects of sterilization with hydrogen peroxide gas plasma, ethylene oxide, and steam on bioadhesive properties of nylon and polyethylene lines used for stabilization of canine stifle joints. Am. J. Vet. Res. 73: 1665–1659.

70 70. Solano, M.A., Danielski, A., Kovach, K. et al. (2015). Locking plate and screw fixation after tibial plateau leveling osteotomy reduces postoperative infection rate in dogs over 50 kg. Vet. Surg. 44: 59–64.

71 71. Singh, A., Walker, M., Rousseau, J., and Weese, J.S. (2013). Characterization of the biofilm forming ability of Staphylococcus pseudintermedius from dogs. BMC Vet. Res. 9: 93.

72 72. Donlan, R.M. (2001). Biofilm formation: a clinically relevant microbiological process. Clin. Infect. Dis. 33: 1387–1392.

73 73. Walker, M., Singh, A., Nazarali, A. et al. (2016). Evaluation of the impact of methicillin‐resistant Staphylococcus pseudintermedius biofilm formation on antimicrobial susceptibility. Vet. Surg. 45: 968–971.

74 74. Azab, M.A., Allen, M.J., and Daniels, J.B. (2016). Evaluation of a silver‐impregnated coating to inhibit colonization of orthopaedic implants by biofilm forming methicillin‐resistant Staphylococcus pseudintermedius. Vet. Comp. Orthop. Traumatol. 29 (6): 347–350.

75 75. Arciola, C.R., Campoccia, D., Speziale, P. et al. (2012). Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm‐resistant materials. Biomaterials 33 (26): 5967–5982.

76 76. Konig, L., Klopfleisch, R., Kershaw, O., and Gruber, A.D. (2015). Prevalence of biofilms on surgical suture segments in wounds of dogs, cats, and horses. Vet. Pathol. 52 (2): 295–297.

77 77. McCagherty, J., Yool, D.A., Paterson, G.K. et al. (2020). Investigation of the in vitro antimicrobial activity of triclosan‐coated suture material on bacteria commonly isolated from wounds in dogs. Am. J. Vet. Res. 81 (1): 84–90.

78 78. Morrison, S., Singh, A., Rousseau, J. et al. (2015). Impact of polymethylmethacrylate additives on methicillin‐resistant Staphylococcus pseudintermedius biofilm formation in vitro. Am. J. Vet. Res. 76 (5): 395–401.

79 79. Boothe, D.M. and Boothe, H.W. Jr. (2015). Antimicrobial considerations in the perioperative patient. Vet. Clin. North Am. Small Anim. Pract. 45 (3): 585–608.

80 80. Anderson, M.E.C. (2015). Contact precautions and hand hygiene in veterinary clinics. Vet. Clin. North Am. Small Anim. Pract. 45 (2): 343–360.

81 81. Bratzler, D. (2005). Antimicrobial prophylaxis for surgery: an advisory statement from the National Surgery Infection Prevention Project. Am. J. Surg. 189: 395–404.

82 82. Whittem, T.L., Johnson, A.L., Smith, C. et al. (1999). Effect of perioperative prophylactic antimicrobial treatment in dogs undergoing elective orthopedic surgery. J. Am. Vet. Med. Assoc. 215: 212–216.

83 83. Weese, J.S. and Halling, K.B. (2006). Perioperative administration of antimicrobials associated with elective surgery in dogs: 83 cases (2003–2005). J. Am. Vet. Med. Assoc. 229 (1): 92–95.

84 84. Hagen, C.R.M., Singh, A., Weese, J.S. et al. (2020). Contributing factors to surgical site infection after tibial plateau leveling osteotomy: a follow‐up retrospective study. Vet. Surg. 49: 930–939.

85 85. Burgess, B.A. (2019). Prevention and surveillance of surgical infections: a review. Vet. Surg. 48: 284–290.

86 86. Stickney, D.N.G. and Mankin, K.M.T. (2018). The impact of postdischarge surveillance on surgical site infection diagnosis. Vet. Surg. 47: 66–73.

87 87. Centers for Disease Control and Prevention (2020). Surgical Site Infection (Event). Atlanta, GA: CDC.

88 88. Nicoll, C., Singh, A., and Weese, J.S. (2014). Economic impact of tibial plateau leveling osteotomy surgical site infection in dogs. Vet. Surg. 43: 899–902.

Complications in Canine Cranial Cruciate Ligament Surgery

Подняться наверх