Читать книгу Security Engineering - Ross Anderson - Страница 52

2.3.2 Attacks on banking and payment systems

Оглавление

Attacks on card payment systems started with lost and stolen cards, with forgery at scale arriving in the 1980s; the dotcom boom ramped things up further in the 1990s as many businesses started selling online with little idea of how to detect fraud; and it was card fraud that spawned underground markets in the mid-2000s as criminals sought ways to buy and sell stolen card numbers as well as related equipment and services.

Another significant component is pre-issue fraud, known in the USA as ‘identity theft’ [670], where criminals obtain credit cards, loans and other assets in your name and leave you to sort out the mess. I write ‘identity theft’ in quotes as it's really just the old-fashioned offence of impersonation. Back in the twentieth century, if someone went to a bank, pretended to be me, borrowed money from them and vanished, then that was the bank's problem, not mine. In the early twenty-first, banks took to claiming that it's your identity that's been stolen rather than their money [1730]. There is less of that liability dumping now, but the FBI still records much cybercrime as ‘identity theft’ which helps keep it out of the mainstream US crime statistics.

The card fraud ecosystem is now fairly stable. Surveys in 2011 and 2019 show that while card fraud doubled over the decade, the loss fell slightly as a percentage of transaction value [91, 92]; the system has been getting more efficient as it grows. Many card numbers are harvested in hacking attacks on retailers, which can be very expensive for them once they've paid to notify affected customers and reimburse banks for reissued cards. As with the criminal infrastructure, the total costs may be easily two orders of magnitude greater than anything the criminals actually get away with.

Attacks on online banking ramped up in 2005 with the arrival of large-scale phishing attacks; emails that seemed to come from banks drove customers to imitation bank websites that stole their passwords. The banks responded with techniques such as two-factor authentication, or the low-cost substitute of asking for only a few letters of the password at a time; the crooks' response, from about 2009, has been credential-stealing malware. Zeus and later Trojans lurk on a PC until the user logs on to a bank whose website they recognise; they then make payments to mule accounts and hide their activity from the user – the so-called ‘man-in-the-browser attack’. (Some Trojans even connect in real time to a human operator.) The crooks behind the Zeus and later the Dridex banking malware were named and indicted by US investigators in December 2019, and accused of stealing some $100m, but they remain at liberty in Russia [796]. Other gangs have been broken up and people arrested for such scams, which continue to net in the hundreds of millions to low billions a year worldwide.

Firms also have to pay attention to business email compromise, where a crook compromises a business email account and tells a customer that their bank account number has changed; or where the crook impersonates the CEO and orders a financial controller to make a payment; and social engineering attacks by people pretending to be from your bank who talk you into releasing a code to authorise a payment. Most targeted attacks on company payment systems can in theory be prevented by the control procedures that most large firms already have, and so the typical target is a badly-run large firm, or a medium-sized firm with enough money to be worth stealing but not enough control to lock everything down.

I'll discuss the technicalities of such frauds in Chapter 12, along with a growing number of crimes that directly affect only banks, their regulators and their retail customers. I'll also discuss cryptocurrencies, which facilitate cybercrimes from ransomware to stock frauds, in Chapter 20.

Security Engineering

Подняться наверх