Читать книгу Body Sensor Networking, Design and Algorithms - Saeid Sanei - Страница 40

References

Оглавление

1 1 Chen, S., Lach, J., Lo, B., and Yang, G.-Z. (2016). Toward pervasive gait analysis with wearable sensors: a systematic review. IEEE Journal of Biomedical and Health Informatics 20 (6): 1251–1537.

2 2 Lee, T.K.M., Belkhatir, M., and Sanei, S. (2014). A comprehensive review of past and present vision-based techniques for gait recognition. Multimedia Tools and Applications 72 (3): 2833–2869.

3 3 Lee, T.K.M., Sanei, S., and Belkhatir, M. (2011). Combining biometrics derived from different classes of nonlinear analyses of fronto-normal gait signals. IARIA International Journal of Advances on Networks and Services 4 (1–2): 232–243.

4 4 Lee, T.K.M., Belkhatir, M., Lee, P.A., and Sanei, S. (2008). Nonlinear characterisation of fronto-normal gait for human recognition. In: Advances in Multimedia Information Processing – PCM 2008, Lecture Notes in Computer Science (eds. Y.-M.R. Huang et al.), 466–475. Berlin: Springer-Verlag.

5 5 Elbaz, A., Mor, A., Segal, G. et al. (2016). Lower extremity kinematic profile of gait of patients after ankle fracture: a case-control study. Journal of Foot and Ankle Surgery 55 (5): 918–921.

6 6 Ihlen, E.A., Weiss, A., Beck, Y. et al. (2016). A comparison study of local dynamic stability measures of daily life walking in older adult community-dwelling fallers and non-fallers. Journal of Biomechanics 49 (9): 1498–1503.

7 7 Tadano, S., Takeda, R., Sasaki, K. et al. (2016). Gait characterization for osteoarthritis patients using wearable gait sensors (H-Gait systems). Journal of Biomechanics 49 (5): 684–690.

8 8 Chini, G., Ranavolo, A., Draicchio, F. et al. (2017). Local stability of the trunk in patients with degenerative cerebellar ataxia during walking. Cerebellum 16 (1): 26–33.

9 9 Gong, J., Lach, J., Qi, Y., and Goldman, M.D. (2015). Causal analysis of inertial body sensors for enhancing gait assessment separability towards multiple sclerosis diagnosis. In: Proceedings of the 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks, 1–6. IEEE.

10 10 Rapp, W., Brauner, T., Weber, L. et al. (2015). Improvement of walking speed and gait symmetry in older patients after hip arthroplasty: a prospective cohort study. BMC Musculoskeletal Disorders 16 (1): 291–298.

11 11 Rampp, A., Barth, J., Schülein, S. et al. (2015). Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients. IEEE Transactions on Biomedical Engineering 62 (4): 1089–1097.

12 12 Kwasnicki, R.M., Hettiaratchy, S., Jarchi, D. et al. (2015). Assessing functional mobility after lower limb reconstruction: a psychometric evaluation of a sensor-based mobility score. Annals of Surgery 261 (4): 800–806.

13 13 Pasluosta, C.F., Barth, J., Gassner, H. et al. (2015). Pull test estimation in Parkinson's disease patients using wearable sensor technology. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 3109–3112. IEEE.

14 14 Mariani, B., Jimenez, M.C., Vingerhoets, F.J., and Aminian, K. (2013). Onshoe wearable sensors for gait and turning assessment of patients with Parkinson's disease. IEEE Transactions on Biomedical Engineering 60 (1): 155–158.

15 15 Bagala, F., Klenk, J., Cappello, A. et al. (2013). Quantitative description of the lie-to-sit-to-stand-to-walk transfer by a single body-fixed sensor. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21 (4): 624–633.

16 16 Barth, J., Sünkel, M., Bergner, K. et al. (2012). Combined analysis of sensor data from hand and gait motor function improves automatic recognition of Parkinson's disease. In: 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 5122–5125. IEEE.

17 17 Benson, L.C., Clermont, C.A., Watari, R. et al. (2019). Automated accelerometer-based gait event detection during multiple running conditions. Sensors (Basel) 19 (7): 1–19.

18 18 Li, R.T., Kling, S.R., Salata, M.J. et al. (2016). Wearable performance devices in sports medicine. Sports Health 8 (1): 74–78.

19 19 Simon, S.R. (2004). Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems. Journal of Biomechanics 37 (12): 1869–1880.

20 20 Jarchi, D., Pope, J., Lee, T.K.M. et al. (2018). A review on accelerometry based gait analysis and emerging clinical applications. IEEE Reviews in Biomedical Engineering 11: 177–194.

21 21 Walter, P.L. (2006). The history of the accelerometer 1920s–1996: prologue and epilogue. Sound & vibration 41 (1): 84–92.

22 22 Fennelly, J., Ding, S., Newton, J., and Zhao, Y. (2012). Thermal MEMS accelerometers fit many applications. Sensor Magazine 3: 18–20.

23 23 Elble, R.J. (2005). Gravitational artifact in accelerometric measurements of tremor. Clinical Neurophysiology 116 (7): 1638–1643.

24 24 Boser, B.E. and Howe, R.T. (1996). Surface micromachined accelerometers. IEEE Journal of Solid-State Circuits 31 (3): 366–375.

25 25 Skog, I., Handel, P., Nilsson, J.O., and Rantakokko, J. (2010). Zero-velocity detection—an algorithm evaluation. IEEE Transactions on Biomedical Engineering 57 (11): 2657–2666.

26 26 Kos, A., Tomazic, S., and Umek, A. (2016). Suitability of smartphone inertial sensors for real-time biofeedback applications. Sensors (Basel) 16 (3): 301.

27 27 Mourcou, Q., Fleury, A., Franco, C. et al. (2015). Performance evaluation of smartphone inertial sensors measurement for range of motion. Sensors (Basel) 15 (9): 23168–23187.

28 28 Kaiyu, T. and Malcolm, H.G. (1999). A practical gait analysis system using gyroscopes. Medical Engineering & Physics 21 (2): 87–94.

29 29 Hestnes, E. (2016) Performance evaluation of smartphone inertial sensors measurement for range of motion. NTNTU, Master thesis, 2016.

30 30 Geen, J. and Krakauer, D. (2003). New iMEMS angular-rate-sensing gyroscope. Analog Dialogue 37 (3): 1–4.

31 31 Belli, A., Bui, P., Berger, A. et al. (2001). A treadmill ergometer for three-dimensional ground reaction forces measurement during walking. Journal of Biomechanics 34 (1): 105–112.

32 32 Tesio, L., Monzani, M., Gatti, R., and Franchignoni, F. (1995). Flexible electrogoniometers: kinesiological advantages with respect to potentiometric goniometers. Clinical Biomechanics 10 (5): 275–277.

33 33 Donno, M., Palange, E., Di Nicola, F. et al. (2008). A new flexible optical fiber goniometer for dynamic angular measurements: application to human joint movement monitoring. IEEE Transactions on Instrumentation and Measurement 57 (8): 1614–1620.

34 34 Murley, G.S., Menz, H.B., and Landorf, K.B. (2009). Foot posture influences the electromyographic activity of selected lower limb muscles during gait. Journal of Foot and Ankle Research 2 (35) https://doi.org/10.1186/1757-1146-2-35.

35 35 Hadi, A., Razak, A., Zayegh, A. et al. (2012). Foot plantar pressure measurement system: a review. Sensors (Basel) 12 (7): 9884–9912.

36 36 De Rossi, S.M., Lenzi, T., Vitiello, N. et al. (2011). Development of an in-shoe pressure sensitive device for gait analysis. In: 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston, MA (30 August–3 September 2011), 5637–5640. IEEE.

37 37 Tsalaile, T., Naqvi, S. M., Nazarpour, K., Sanei S., and Chambers, J. A. (2008) Blind source extraction of heart sound signals from lung sound recordings exploiting periodicity of the heart sound. 33rd IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas (30 March–4 April 2008).

38 38 Tsalaile, T., Sameni, R., Sanei, S. et al. (2009). Sequential blind source extraction for quasi-periodic signals with time-varying period. IEEE Transaction on Biomedical Engineering 56 (3): 646–655.

39 39 Makkiabadi, B. Jarchi, D. and Sanei, S. (2012) A new time domain convolutive BSS of heart and lung sounds. Proceedings of the IEEE International Conference on Acoustic, Speech, and Signal Processing, ICASSP, Kyoto, Japan (25– March 2012).

40 40 Ghaderi, F., Sanei, S., and McWhirter, J. (2010) Blind source extraction of cyclostationary sources with common cyclic frequencies. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, Dallas, TX (14–19 March 2010).

41 41 Pacela, A.F. (1966). Impedance pneumography: a survey of instrumentation techniques. Medical & Biological Engineering 4 (1): 1–15.

42 42 Aminiahidashti, H., Shafiee, S., Zamani Kiasari, A., and Sazgar, M. (2018). Applications of end-tidal carbon dioxide (ETCO2) monitoring in emergency department; a narrative review. Emergency (Tehran) 6 (1): e5.

43 43 Carrano, J. (2005). Chemical and Biological Sensor Standards Study, 1–30. Arlington, CA: DARPA report.

44 44 Smith, A. L. (2005) Quartz crystal microbalance/heat conduction calorimetry. Online American Laboratory. https://americanlaboratory.com/914-Application-Notes/36163-Quartz-Crystal-Microbalance-Heat-Conduction-Calorimetry/ (accessed 25 November 2019).

45 45 Clark, L.C. Jr. and Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences 102: 29–45.

46 46 Vigneshvar, S., Sudhakumari, C.C., Senthilkumaran, B., and Prakash, H. (2016). Recent advances in biosensor technology for potential applications – an overview. Frontiers in Bioengineering and Biotechnology 4 (11) https://doi.org/10.3389/fbioe.2016.00011.

47 47 Kazlauskaite, R., Soni, S., Evans, A.T. et al. (2009). Accuracy of self-monitored blood glucose in type 2 diabetes. Diabetes Technology & Therapeutics 11 (6): 385–392. https://doi.org/10.1089/dia.2008.0111.

48 48 Weston, P. (2017) World's first diabetes app will be able to check glucose levels without drawing a drop of blood and will be able to reveal what a can of coke REALLY does to sugar levels. MailOnline (24 August). www.dailymail.co.uk/health/article-4817080/First-health-app-checks-glucose-levels-without-blood.html (accessed 26 November 2019).

49 49 Analog Devices, Data Sheets (1996)ADXL50/ADXL05 Evaluation Modules. https://www.alldatasheet.com/datasheet-pdf/pdf/88616/AD/ADXL50.html (accessed 6 January 2020). Norwood, M.A., Alldatasheet.com.

50 50 Middelhoek, S., Bellekom, A.A., Dauderstadt, U. et al. (1995). Silicon sensors. Measurement Science and Technology 6 (12): 1641.

51 51 Sze, S.M. (1994). Biosensors. In: Semiconductor Sensors (ed. S.M. Sze). Wiley.

52 52 Wang, B., Takahashi, S., Du, X., and Anzai, J. (2014). Electrochemical biosensors based on ferroceneboronic acid and its derivatives: a review. Biosensors (Basel) 4: 243–256.

53 53 Erden, P.E. and Kilic, E. (2013). A review of enzymatic uric acid biosensors based on amperometric detection. Talanta 107: 312–323.

54 54 Kim, J., Imani, S., de Araujo, W.R. et al. (2015). Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosensors & Bioelectronics 74: 1061–1068.

55 55 Pundir, C.S. and Chauhan, N. (2012). Acetylcholinesterase inhibition-based biosensors for pesticide determination: a review. Analytical Biochemistry 429: 19–31.

56 56 Marrazza, G. (2014). Piezoelectric biosensors for organophosphate and carbamate pesticides: a review. Biosensors (Basel) 4: 301–317.

57 57 Schneider, E. and Clark, D.S. (2013). Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosensors & Bioelectronics 39: 1–13.

58 58 Khimji, I., Kelly, E.Y., Helwa, Y. et al. (2013). Visual optical biosensors based on DNA-functionalized polyacrylamide hydrogels. Methods 64: 292–298.

59 59 Peng, F., Su, Y., Zhong, Y. et al. (2014). Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Accounts of Chemical Research 47: 612–623.

60 60 Shen, M.Y., Li, B.R., and Li, Y.K. (2014). Silicon nanowire field-effect-transistor based biosensors: from sensitive to ultra-sensitive. Biosensors & Bioelectronics 60: 101–111.

61 61 Ogi, H. (2013). Wireless-electrodeless quartz-crystal-microbalance biosensors for studying interactions among biomolecules: a review. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences 89: 401–417.

62 62 Li, M., Li, R., Li, C.M., and Wu, N. (2011). Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review. Frontiers in Bioscience (Scholar Edition) 3: 1308–1331.

63 63 Kwon, S.J. and Bard, A.J. (2012). DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response. Journal of the American Chemical Society 134: 10777–10779.

64 64 Zhou, Y., Chiu, C.W., and Liang, H. (2012). Interfacial structures and properties of organic materials for biosensors: an overview. Sensors (Basel) 12: 15036–15062.

65 65 Guo, X. (2013). Single-molecule electrical biosensors based on single-walled carbon nanotubes. Advanced Materials 25: 3397–3408.

66 66 Hutter, E. and Maysinger, D. (2013). Gold-nanoparticle-based biosensors for detection of enzyme activity. Trends in Pharmacological Sciences 34: 497–507.

67 67 Ko, P.J., Ishikawa, R., Sohn, H., and Sandhu, A. (2013). Porous silicon platform for optical detection of functionalized magnetic particles biosensing. Journal of Nanoscience and Nanotechnology 13: 2451–2460.

68 68 Senveli, S.U. and Tigli, O. (2013). Biosensors in the small scale: methods and technology trends. IET Nanobiotechnology 7: 7–21.

69 69 Valentini, F., Galache, F.L., Tamburri, E., and Palleschi, G. (2013). Single walled carbon nanotubes/polypyrrole-GOx composite films to modify gold microelectrodes for glucose biosensors: study of the extended linearity. Biosensors & Bioelectronics 43: 75–78.

70 70 Lamprecht, C., Hinterdorfer, P., and Ebner, A. (2014). Applications of biosensing atomic force microscopy in monitoring drug and nanoparticle delivery. Expert Opinion on Drug Delivery 11: 1237–1253.

71 71 Sang, S., Wang, Y., Feng, Q. et al. (2015). Progress of new label-free techniques for biosensors: a review. Critical Reviews in Biotechnology 15: 1–17.

72 72 Randriamampita, C. and Lellouch, A.C. (2014). Imaging early signaling events in T lymphocytes with fluorescent biosensors. Biotechnology Journal 9: 203–212.

73 73 Oldach, L. and Zhang, J. (2014). Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation. Chemistry & Biology 21: 186–197.

74 74 Kunzelmann, S., Solscheid, C., and Webb, M.R. (2014). Fluorescent biosensors: design and application to motor proteins. Experientia Supplementum 105: 25–47.

75 75 Wang, S., Poon, G.M., and Wilson, W.D. (2015). Quantitative investigation of protein-nucleic acid interactions by biosensor surface plasmon resonance. Methods in Molecular Biology 1334: 313–332.

76 76 Gutierrez, J.C., Amaro, F., and Martin-Gonzalez, A. (2015). Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review. Frontiers in Microbiology 6 (48): 1–8.

77 77 Sun, J.Z., Peter, K.G., Si, R.W. et al. (2015). Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Science and Technology 71 (6): 801–809.

Body Sensor Networking, Design and Algorithms

Подняться наверх