Читать книгу EEG Signal Processing and Machine Learning - Saeid Sanei - Страница 10

Оглавление

Preface to the First Edition

There is ever‐increasing global demand for more affordable and effective clinical and healthcare services. New techniques and equipment must therefore be developed to aid in the diagnosis, monitoring, and treatment of abnormalities and diseases of the human body. Biomedical signals (biosignals) in their manifold forms are rich information sources, which when appropriately processed have the potential to facilitate such advancements. In today's technology, such processing is very likely to be digital, as confirmed by the inclusion of digital signal processing concepts as core training in biomedical engineering degrees. Recent advancements in digital signal processing are expected to underpin key aspects of the future progress in biomedical research and technology, and it is the purpose of this research monograph to highlight this trend for the processing of measurements of brain activity, primarily electroencephalograms (EEGs).

Most of the concepts in multichannel EEG digital signal processing have their origin in distinct application areas such as communications engineering, seismics, speech and music signal processing, together with the processing of other physiological signals, such as electrocardiograms (ECGs) The particular topics in digital signal processing first explained in this research monograph include: definitions; illustrations; time domain, frequency domain, and time–frequency domain processing; signal conditioning; signal transforms; linear and nonlinear filtering; chaos definition, evaluation, and measurement; certain classification algorithms; adaptive systems; independent component analysis; and multivariate autoregressive modelling. In addition, motivated by research in the field over the last two decades, techniques specifically related to EEG processing such as brain source localization, detection and classification of event‐related potentials, sleep signal analysis, seizure detection and prediction, together with brain–computer interfacing are comprehensively explained and, with the help of suitable graphs and (topographic) images, simulation results are provided to assess the efficacy of the methods.

Chapter 1 of this research monograph is a comprehensive biography of the history and generation of EEG signals, together with a discussion of their significance and diagnostic capability. Chapter 2 provides an in‐depth introduction to the mathematical algorithms and tools commonly used in the processing of EEG signals. Most of these algorithms have only been recently developed by experts in the signal processing community and then applied to the analysis of EEG signals for various purposes. In Chapter 3, event‐related potentials are explained and the schemes for their detection and classification are explored. Many neurological and psychiatric brain disorders are diagnosed and monitored using these techniques. Chapter 4 complements the previous chapter by specifically looking at the behaviour of EEG signals in patients suffering from epilepsy. Some very recent methods in seizure prediction are demonstrated. This chapter concludes by opening up a new methodology in joint, or bimodal, EEG–fMRI analysis of epileptic seizure signals. Localization of brain source signals is next covered in Chapter 5. Traditional dipole methods are described and some very recent processing techniques such as blind source separation are briefly reviewed. In Chapter 6, the concepts developed for the analysis and description of EEG sleep recordings are summarized and the important parameters and terminologies are explained. Finally, in Chapter 7, one of the most important applications of the developed mathematical tools for processing of EEG signals, namely brain–computer interfacing, is explored and recent advancements are briefly explained. Results of the application of these algorithms are described.

In the treatment of various topics covered within this research monograph it is assumed that the reader has a background in the fundamentals of digital signal processing and wishes to focus on processing of EEGs. It is hoped that the concepts covered in each chapter provide a foundation for future research and development in the field.

In conclusion, we do wish to stress that in this book there is no attempt to challenge previous clinical or diagnostic knowledge. Instead, the tools and algorithms described in this book can, we believe, potentially enhance the significant clinically related information within EEG signals and thereby aid physicians and ultimately provide more cost effective and efficient diagnostic tools.

Both authors wish to thank most sincerely our previous and current PhD students who have contributed so much to the material in this work and our understanding of the field. Special thanks to Min Jing, Tracey Lee, Kianoush Nazarpour, Leor Shoker, Loukianous Spyrou, and Wenwu Wang, who contributed to providing some of the illustrations. Finally, this book became truly possible due to spiritual support and encouragement of Maryam Zahabsaniei, Erfan Sanei, and Ideen Sanei.

Saeid Sanei

Jonathon A. Chambers

January 2007

EEG Signal Processing and Machine Learning

Подняться наверх