Читать книгу Digital Communications 2 - Safwan El Assad - Страница 4
List of Illustrations
Оглавление1 Chapter 1Figure 1.1. Basic diagram of a digital communicationFigure 1.2. Basic block diagram of a digital communication of a memoryless infor...Figure 1.3. Block diagram of a digital transmission system for analog signalFigure 1.4. General scheme of a digital transmission of a TV signal with inform...Figure 1.5. Information compression using a DPCM system and a Huffman code C4Figure 1.6. Probability law Pr(U) of TV frames grey levels UFigure 1.7. Block diagram of Hamming coder C(7, 4)Figure 1.8. Block diagram of Hamming decoder C(7, 4)Figure 1.9. Implementation scheme of the encoderFigure 1.10. Implementation scheme of the decoderFigure 1.11. Implementation scheme of the coder based on a linear feedback shift...Figure 1.12. Implementation scheme of the decoder based on a linear feedback shi...Figure 1.13. Pseudo-random number generator and register statesFigure 1.14. Structure of the decoder for the detection of errors. For a color ...Figure 1.15. Implementation scheme of the pre-multiplied coderFigure 1.16. Implementation scheme of the pseudo-random number generator (PRNG)Figure 1.17. Implementation scheme of the coder. For a color version of this fig...Figure 1.18. Implementation scheme of the decoder. For a color version of this f...Figure 1.19. Implementation scheme of the pseudo-random number generator based ...Figure 1.20. Implementation scheme of the Gold generator
2 Chapter 2Figure 2.1. Partial response linear coding schemeFigure 2.2. Examples of binary RZ and NRZ codes. For a color version of this fig...Figure 2.3. Example of signal s(t) waveform with θ < T/2Figure 2.4. First situation: 0 ≤ τ ≤ θ (with θ ≤ T/2)Figure 2.5. Second and third situationsFigure 2.6. Autocorrelation function Rs (τ) and its decompositionFigure 2.7. Symmetrical triangular functionFigure 2.8. Discrete spectral components of the power spectral density I2 (f) Fo...Figure 2.9. First situation: 0 < τ ≤ θ (with T/2 < θ ≤ T). For a color version o...Figure 2.10. Second situation: θ ≤ τ < TFigure 2.11. Third situation: T ≤ τ < T + θ . For a color version of this figure...Figure 2.12. Autocorrelation function Rs (τ) and its decomposition. For a color ...Figure 2.13. Example of a bipolar RZ signal waveform. For a color version of thi...Figure 2.14. First case: 0 < τ < T/2 and a positive impulsion at t. For a color ...Figure 2.15. First case: 0 ≤ τ ≤ T/2 and negative impulse at t . For a color ver...Figure 2.16. Second case: T/2 < τ ≤ T . For a color version of this figure, see ...Figure 2.17. Third case: T < τ ≤ T + T/2 . For a color version of this figure, s...Figure 2.18. Fourth case: 3T/2 < τ ≤ 2T . For a color version of this figure, se...Figure 2.19. (a) Autocorrelation function of the bipolar RZ code and (b) its dec...Figure 2.20. Trapezoidal function. For a color version of this figure, see www.i...Figure 2.21. Power spectral density of the bipolar RZ code. For a color version ...Figure 2.22. Transmission system with partial response linear encoderFigure 2.23. Basic pulse shape (type RZ)Figure 2.24. Block diagram of the partial response linear coderFigure 2.25. Structure of the partial response linear coder (D: D flip-flop sync...Figure 2.26. Block diagram of the baseband transmission systemFigure 2.27. Power spectral density Γb0 (f) of noise b0 (t)Figure 2.28. Amplitude spectrum P (f) of p (t)Figure 2.29. Block diagram of the baseband digital transmission systemFigure 2.30. Equivalent power spectral density of noise b0 (t)Figure 2.31. Amplitude spectrum P(f) of p(t)Figure 2.32. First-order R-C low pass filterFigure 2.33. Amplitude spectrum P(f) of p(t)Figure 2.34. Block diagram of the baseband transmission system on a cableFigure 2.35. Amplitude spectrum P(f) of p(t)Figure 2.36. Sample values akV, optimal thresholds and decision classes of ak : ...Figure 2.37. Sample values ak2V, optimal thresholds and decision classes of ak :...Figure 2.38. Practical chain of a digital baseband communication system with bip...Figure 2.39. Block diagram of RZ bipolar coder and decoderFigure 2.40. Amplitude spectrum P(f) of p(t)Figure 2.41. Sample values without ISI and noise, optimal thresholds and decisio...Figure 2.42. Baseband transmission and reception chain with partial response lin...Figure 2.43. Temporal diagrams of duobinary coding and decodingFigure 2.44. Duobinary precoder, transcoder and coder schemeFigure 2.45. Chronograms of duobinary coding and decoding. For a color version o...Figure 2.46. Values of sample ckV, optimum thresholds and decision classes of ck...Figure 2.47. Gaussian probability law and distribution intervalsFigure 2.48. Partial response transmitter and receiver block diagramFigure 2.49. Details of the partial response transmitter block diagramFigure 2.50. Combined scheme of precoder, transcoder and encoderFigure 2.51. Values of sample ckV, optimum thresholds and decision classes of ck...Figure 2.52. Gaussian probability law with zero mean and unit standard deviation...
3 Chapter 3Figure 3.1. General block diagram of a digital transmission system with carrier ...Figure 3.2. Supports of transfer function H (f) and He (f) . For a color version...Figure 3.3. General block diagram of a digital transmission system with quadratu...Figure 3.4. Block diagram of a digital transmission system with 2 -ASK modulatio...Figure 3.5. Block diagram of a digital transmission system with quadrature ampli...Figure 3.6. Sample value optimal threshold and estimation classesFigure 3.7. Block diagram of a digital transmission system with QAM modulationFigure 3.8. Constellation diagram of a 2-PSK modulation (reference)Figure 3.9. Constellation diagrams of 4 - ASK, 4 - QAM (QPSK) and16-QAM digital ...Figure 3.10. Fundamental frequency characteristics of a digital modulationFigure 3.11. Examples of positioning the points in the constellation diagram of ...Figure 3.12. Block diagram of the realization of the 16 -QAM modulator construct...Figure 3.13. Digital transmission system with quadrature amplitude modulation
4 Chapter 4Figure 4.1. Practical implementation of the TDR methodFigure 4.2. Bitrate measurement scheme
5 Chapter 6Figure 6.1. Block diagram of the ASK demodulationFigure 6.2. Block diagram of FSK modulationFigure 6.3. Block diagram of digital FSK demodulationFigure 6.4. Block diagram of a digital PSK modulationFigure 6.5. Block diagram of a digital PSK demodulationFigure 6.6. Block diagrams of a digital PSK modulation and demodulation by using...
6 Chapter 7Figure 7.1. Block diagram of a QPSK modem “mqpsk.mdI”Figure 7.2. Decomposition of function “Map QPSK”Figure 7.3. Decomposition of function “transmitter1”Figure 7.4. Decomposition of function “up”Figure 7.5. Decomposition of function “down”Figure 7.6. Decomposition of function “receiver1”Figure 7.7. Parameter file “pmqpsk.m”Figure 7.8. QPSK map
7 Chapter 8Figure 8.1. codec3f: cyclic coding and decodingFigure 8.2. Generation of the word informationFigure 8.3. Encoding diagramFigure 8.4. Binary transmission channel generatorFigure 8.5. Decoding diagramFigure 8.6. Example of simulation resultsFigure 8.7. coder based on linear feedback shift register (LFSR)Figure 8.8. Decoder based on linear feedback shift register (LFSR)