Читать книгу Musculoskeletal Disorders - Sean Gallagher - Страница 113
Bibliography
Оглавление1 Ailavajhala, R., Oswald, J., Rajapakse, C. S., & Pleshko, N. (2019). Environmentally‐controlled near infrared spectroscopic imaging of bone water. Scientific Reports, 9(1), 10199. https://doi.org/10.1038/s41598‐019‐45897‐3
2 Ailavajhala, R., Querido, W., Rajapakse, C. S., & Pleshko, N. (2020). Near infrared spectroscopic assessment of loosely and tightly bound cortical bone water. Analyst, 145(10), 3713–3724. https://doi.org/10.1039/c9an02491c
3 Al‐Dujaili, S. A., Lau, E., Al‐Dujaili, H., Tsang, K., Guenther, A., & You, L. (2011). Apoptotic osteocytes regulate osteoclast precursor recruitment and differentiation in vitro. Journal of Cellular Biochemistry, 112(9), 2412–2423. https://doi.org/10.1002/jcb.23164
4 Ali, S., Cunningham, R., Amin, M., Popoff, S. N., Mohamed, F., & Barbe, M. F. (2015). The extensor carpi ulnaris pseudolesion: Evaluation with microCT, histology, and MRI. Skeletal Radiol, 44(12), 1735–1743. https://doi.org/10.1007/s00256‐015‐2224‐3
5 Bakker, A. D., Silva, V. C., Krishnan, R., Bacabac, R. G., Blaauboer, M. E., Lin, Y. C., … Klein‐Nulend, J. (2009). Tumor necrosis factor alpha and interleukin‐1beta modulate calcium and nitric oxide signaling in mechanically stimulated osteocytes. Arthritis Rheum, 60(11), 3336–3345. https://doi.org/10.1002/art.24920
6 Barbe, M. F., Harris, M. Y., Cruz, G. E., Amin, M., Billett, N. M., Dorotan, J. T., … Bove, G. M. (2021). Key indicators of repetitive overuse‐induced neuromuscular inflammation and fibrosis are prevented by manual therapy in a rat model. BMC Musculoskelet Disord, 22(1), 417. https://doi.org/10.1186/s12891‐021‐04270‐0
7 Barbe, M. F., & Popoff, S. N. (2020). Occupational activities: Factors that tip the balance from bone accrual to bone loss. Exercise and Sport Sciences Reviews, 48(2), 59–66. https://doi.org/10.1249/JES.0000000000000217
8 Benjamin, M., & Ralphs, J. R. (1998). Fibrocartilage in tendons and ligaments‐‐an adaptation to compressive load. Journal of Anatomy, 193(Pt 4), 481–494. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10029181
9 Bonewald, L. F. (2007). Osteocytes as dynamic multifunctional cells. Annals of the New York Academy of Sciences, 1116, 281–290. https://doi.org/10.1196/annals.1402.018
10 Borynsenko, M., & Beringer, T. (1989). Functional histology (pp. 105–112). Boston: Little, Brown.
11 Boyce, B. F., & Xing, L. (2007). Biology of RANK, RANKL, and osteoprotegerin. Arthritis Research and Therapy, 9(Suppl 1), S1. https://doi.org/10.1186/ar2165
12 Brabnikova Maresova, K., Pavelka, K., & Stepan, J. J. (2013). Acute effects of glucocorticoids on serum markers of osteoclasts, osteoblasts, and osteocytes. Calcified Tissue International, 92(4), 354–361. https://doi.org/10.1007/s00223‐012‐9684‐4
13 Brooks, M. (1963). Blood supply of long bones. British Medical Journal, 2(5364), 1064–1065.
14 Brunello, E., Caremani, M., Melli, L., Linari, M., Fernandez‐Martinez, M., Narayanan, T., … Reconditi, M. (2014). The contributions of filaments and cross‐bridges to sarcomere compliance in skeletal muscle. Journal of Physiology, 592(17), 3881–3899. https://doi.org/10.1113/jphysiol.2014.276196
15 Burgess, T. L., Qian, Y., Kaufman, S., Ring, B. D., Van, G., Capparelli, C., … Lacey, D. L. (1999). The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. Journal of Cell Biology, 145(3), 527–538. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10225954
16 Butler, D. L., Grood, E. S., Noyes, F. R., & Zernicke, R. F. (1978). Biomechanics of ligaments and tendons. Exercise and Sport Sciences Reviews, 6, 125–181. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/394967
17 Cabuk, H., & Kuşku Çabuk, F. (2016). Mechanoreceptors of the ligaments and tendons around the knee. Clinical Anatomy, 29(6), 789–795. https://doi.org/10.1002/ca.22743
18 Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9(5), 641–650. https://doi.org/10.1002/jor.1100090504
19 Carter, D. R., & Hayes, W. C. (1977). The compressive behavior of bone as a two‐phase porous structure. Journal of Bone Joint Surgery, A, 59, 954–962.
20 Charge, S. B., & Rudnicki, M. A. (2004). Cellular and molecular regulation of muscle regeneration. Physiological Reviews, 84(1), 209–238. https://doi.org/10.1152/physrev.00019.2003
21 Chow, J. W., Wilson, A. J., Chambers, T. J., & Fox, S. W. (1998). Mechanical loading stimulates bone formation by reactivation of bone lining cells in 13‐week‐old rats. Journal of Bone and Mineral Research, 13(11), 1760–1767. https://doi.org/10.1359/jbmr.1998.13.11.1760
22 Clarke, B. (2008). Normal bone anatomy and physiology. Clinical Journal of the American Society of Nephrology, 3(Suppl 3), S131–S139. https://doi.org/10.2215/CJN.04151206
23 Collins, C. A., Olsen, I., Zammit, P. S., Heslop, L., Petrie, A., Partridge, T. A., & Morgan, J. E. (2005). Stem cell function, self‐renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell, 122(2), 289–301. https://doi.org/10.1016/j.cell.2005.05.010
24 Cooper, R. R., Milgram, J. W., & Robinson, R. A. (1966). Morphology of the osteon. An electron microscopic study. The Journal of Bone and Joint Surgery, 48(7), 1239–1271. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5921783
25 Deng, Z. L., Sharff, K. A., Tang, N., Song, W. X., Luo, J., Luo, X., … He, T. C. (2008). Regulation of osteogenic differentiation during skeletal development. Frontiers in Bioscience, 13, 2001–2021. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17981687
26 Dick, M. K., Miao, J. H., & Limaiem, F. (2020). Histology, Fibroblast. Treasure Island, FL: StatPearls.
27 Dransfield, E. (1977). Intramuscular composition and texture of beef muscles. Journal of the Science of Food and Agriculture, 28(9), 833–842. https://doi.org/10.1002/jsfa.2740280910
28 Ernst, M., Heath, J. K., & Rodan, G. A. (1989). Estradiol effects on proliferation, messenger ribonucleic acid for collagen and insulin‐like growth factor‐I, and parathyroid hormone‐stimulated adenylate cyclase activity in osteoblastic cells from calvariae and long bones. Endocrinology, 125(2), 825–833. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2752978
29 Ervasti, J. M., & Campbell, K. P. (1993). A role for the dystrophin‐glycoprotein complex as a transmembrane linker between laminin and actin. Journal of Cell Biology, 122(4), 809–823. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8349731
30 Evans, J. H., & Barbenel, J. C. (1975). Structural and mechanical properties of tendon related to function. Equine Veterinary Journal, 7(1), 1–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1116491
31 Exeter, D., & Connell, D. A. (2010). Skeletal muscle: Functional anatomy and pathophysiology. Semin Musculoskelet Radiol, 14(2), 97–105. https://doi.org/10.1055/s‐0030‐1253154
32 Fedorczyk, J. M., Barr, A. E., Rani, S., Gao, H. G., Amin, M., Amin, S., … Barbe, M. F. (2010). Exposure‐dependent increases in IL‐1beta, substance P, CTGF, and tendinosis in flexor digitorum tendons with upper extremity repetitive strain injury. Journal of Orthopaedic Research, 28(3), 298–307. https://doi.org/10.1002/jor.20984
33 Fitch, J. M., Gross, J., Mayne, R., Johnson‐Wint, B., & Linsenmayer, T. F. (1984). Organization of collagen types I and V in the embryonic chicken cornea: monoclonal antibody studies. Proceedings of the National Academy of Sciences of the United States of America, 81(9), 2791–2795. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6326145
34 Friedenstein, A. J., Chailakhyan, R. K., & Gerasimov, U. V. (1987). Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet, 20(3), 263–272. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3690622
35 Gartner, L. P., & Hiatt, J. L. (2007). Color textbook of histology (3rd ed.). Saunders,Inc.
36 Gilbert‐Honick, J., & Grayson, W. (2020). Vascularized and innervated skeletal muscle tissue engineering. Advanced Healthcare Materials, 9(1), e1900626.
37 Gillies, A. R., & Lieber, R. L. (2011). Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve, 44(3), 318–331. https://doi.org/10.1002/mus.22094
38 Grounds, M. D., Sorokin, L., & White, J. (2005). Strength at the extracellular matrix‐muscle interface. Scandinavian Journal of Medicine and Science in Sports, 15(6), 381–391. https://doi.org/10.1111/j.1600‐0838.2005.00467.x
39 Hirose, S., Li, M., Kojima, T., de Freitas, P. H., Ubaidus, S., Oda, K., … Amizuka, N. (2007). A histological assessment on the distribution of the osteocytic lacunar canalicular system using silver staining. Journal of Bone and Mineral Metabolism, 25(6), 374–382. https://doi.org/10.1007/s00774‐007‐0764‐x
40 Hofbauer, L. C., Khosla, S., Dunstan, C. R., Lacey, D. L., Spelsberg, T. C., & Riggs, B. L. (1999). Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology, 140(9), 4367–4370. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10465311
41 Hu, Z. M., Peel, S. A., Ho, S. K., Sandor, G. K., & Clokie, C. M. (2009). Induction of bone matrix protein expression by native bone matrix proteins in C2C12 culture. Biomedical and Environmental Sciences, 22(2), 164–169. https://doi.org/10.1016/S0895‐3988(09)60041‐6
42 Iannarone, V. J., Cruz, G. E., Hilliard, B. A., & Barbe, M. F. (2019). The answer depends on the question: Optimal conditions for western blot characterization of muscle collagen type 1 depends on desired isoform. Journal of Biological Methods, 6(3), e117. https://doi.org/10.14440/jbm.2019.289
43 Ishikawa, H. (1966). Electron microscopic observations of satellite cells with special reference to the development of mammalian skeletal muscles. Zeitschrift für Anatomie und Entwicklungsgeschichte, 125(1), 43–63. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5973580
44 Jiang, J. X., Siller‐Jackson, A. J., & Burra, S. (2007). Roles of gap junctions and hemichannels in bone cell functions and in signal transmission of mechanical stress. Frontiers in Bioscience, 12, 1450–1462. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17127393
45 Joyner, M. J., & Casey, D. P. (2015). Regulation of increased blood flow (hyperemia) to muscles during exercise: A hierarchy of competing physiological needs. Physiological Reviews, 95(2), 549–601. https://doi.org/10.1152/physrev.00035.2013
46 Jozsa, L., & Kannus, P. (1997). Histopathological findings in spontaneous tendon ruptures. Scandinavian Journal of Medicine and Science in Sports, 7(2), 113–118. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9211612
47 Junqueira, L. C., & Carneiro, J. (2005). Basic histology text and atlas (11th ed.). McGraw‐Hill.
48 Kannus, P. (2000). Structure of the tendon connective tissue. Scandinavian Journal of Medicine and Science in Sports, 10(6), 312–320. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11085557
49 Ker, R. F. (2002). The implications of the adaptable fatigue quality of tendons for their construction, repair and function. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 133(4), 987–1000. https://doi.org/10.1016/s1095‐6433(02)00171‐x
50 Khurana, J. S. (Ed.) (2009). Bone pathology (2nd ed.). Humana Press.
51 Kietrys, D. M., Barr, A. E., & Barbe, M. F. (2011). Exposure to repetitive tasks induces motor changes related to skill acquisition and inflammation in rats. Journal of Motor Behavior, 43(6), 465–476. https://doi.org/10.1080/00222895.2011.627897
52 Kjaer, M. (2004). Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiological Reviews, 84(2), 649–698. https://doi.org/10.1152/physrev.00031.2003
53 Klein‐Nulend, J., Bacabac, R. G., & Bakker, A. D. (2012). Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater, 24, 278–291. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23007912
54 Klein‐Nulend, J., & Bonewald, L. F. (2008). The osteocyte. In J. P. Bilezikian, L. G. Raisz, & T. J. Martin (Eds.), Principles of bone biology (3rd ed., pp. 153–174). Academic Press, ISBN 9780123738844, doi: https://doi.org/10.1016/B978‐0‐12‐373884‐4.00028‐8
55 Kusters, Y. H., & Barrett, E. J. (2016). Liraglutide prevents microvascular insulin resistance and preserves muscle capillary density in high‐fat diet‐fed rats. American Journal of Physiology‐Endocrinology and Metabolism, 311(3), E640‐8. https://doi.org/10.1152/ajpendo.00205.2016
56 Li, Y., Wu, T., & Liu, S. (2021). Identification and distinction of tenocytes and tendon‐derived stem cells. Frontiers in Cell and Developmental Biology, 9, 629515.
57 Lian, J. B., & Stein, G. S. (2008). Osteoblast biology. In D. Feldman, D. A. Nelson, & C. J. R. R. Marcus (Eds.), Osteoporosis (3rd ed.). Elseivier Inc.
58 Listrat, A., Lethias, C., Hocquette, J. F., Renand, G., Menissier, F., Geay, Y., & Picard, B. (2000). Age‐related changes and location of types I, III, XII and XIV collagen during development of skeletal muscles from genetically different animals. The Histochemical Journal, 32(6), 349–356. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10943849
59 Lynch, M. P., Stein, J. L., Stein, G. S., & Lian, J. B. (1995). The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: Modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Experimental Cell Research, 216(1), 35–45. https://doi.org/10.1006/excr.1995.1005
60 Majeska, R. J., Ryaby, J. T., & Einhorn, T. A. (1994). Direct modulation of osteoblastic activity with estrogen. The Journal of Bone and Joint Surgery, 76(5), 713–721. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8175820
61 Malaval, L., Modrowski, D., Gupta, A. K., & Aubin, J. E. (1994). Cellular expression of bone‐related proteins during in vitro osteogenesis in rat bone marrow stromal cell cultures. Journal of Cellular Physiology, 158(3), 555–572. https://doi.org/10.1002/jcp.1041580322
62 Mansour, J. M. (2009). Biomechanics of cartilage. In C. Hughes (Ed.), Kinesiology: The mechanics and pathomechanics of human movement (2nd ed., pp. 66–79). Baltimore: Lippincott Williams & Wilkins.
63 Marvulli, D., Volpin, D., & Bressan, G. M. (1996). Spatial and temporal changes of type VI collagen expression during mouse development. Developmental dynamics: An official Publication of the American Association of Anatomists, 206(4), 447–454. https://doi.org/10.1002/(SICI)1097‐0177(199608)206:4<447::AID‐AJA10>3.0.CO;2‐U
64 Mauro, A. (1961). Satellite cell of skeletal muscle fibers. Journal of Biophysical and Biochemical cytology, 9, 493–495. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/13768451
65 Miller, S. C., de Saint‐Georges, L., Bowman, B. M., & Jee, W. S. (1989). Bone lining cells: Structure and function. Scanning Microsc, 3(3), 953–960. discussion 960‐951. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2694361
66 Mukund, K., & Subramaniam, S. (2019). Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 12, e1462. Wiley
67 Murphy, W. L., Black, J., & Hastings, G. W. (2016). Handbook of biomaterial properties (2nd ed.). New York: Springer.
68 Nakashima, T., Hayashi, M., Fukunaga, T., Kurata, K., Oh‐Hora, M., Feng, J. Q., … Takayanagi, H. (2011). Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nature Medicine, 17(10), 1231–1234. https://doi.org/10.1038/nm.2452
69 Nakashima, T., & Takayanagi, H. (2011). New regulation mechanisms of osteoclast differentiation. Annals of the New York Academy of Sciences, 1240, E13–E18. https://doi.org/10.1111/j.1749‐6632.2011.06373.x
70 Nayak, A., & Amrute‐Nayak, M. (2020). SUMO system – A key regulator in sarcomere organization. FEBS Journal, 287, 2176–2190. https://doi.org/10.1111/febs.15263
71 Nordin, M., & Frankel, V. H. (2012). Basic biomechanics of the musculoskeletal system (4th ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins.
72 O'Brien, M. (1997). Structure and metabolism of tendons. Scandinavian Journal of Medicine and Science in Sports, 7(2), 55–61. https://doi.org/10.1111/j.1600‐0838.1997.tb00119.x
73 Owen, M. (1988). Marrow stromal stem cells. Journal of Cell Science. Supplement, 10, 63–76. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3077943
74 Pierobon‐Bormioli, S., Sartore, S., Libera, L. D., Vitadello, M., & Schiaffino, S. (1981). “Fast” isomyosins and fiber types in mammalian skeletal muscle. Journal of Histochemistry and Cytochemistry, 29(10), 1179–1188. https://doi.org/10.1177/29.10.7028858
75 Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., … Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10102814
76 Robey, P. G., Fedarko, N. S., Hefferan, T. E., Bianco, P., Vetter, U. K., Grzesik, W., et al. (1993). Structure and molecular regulation of bone matrix proteins. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 8(Suppl 2), S483–S487. https://doi.org/10.1002/jbmr.5650081310
77 Ross, M. H., Romrell, L. J., & Kaye, G. I. (1995). Histology: A text and atlas (3rd ed.). Baltimore: Williams & Wilkins.
78 Sanes, J. R. (1982). Laminin, fibronectin, and collagen in synaptic and extrasynaptic portions of muscle fiber basement membrane. Journal of Cell Biology, 93(2), 442–451. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7047538
79 Schiaffino, S. (2010). Fibre types in skeletal muscle: A personal account. Acta Physiologica (Oxf), 199(4), 451–463. https://doi.org/10.1111/j.1748‐1716.2010.02130.x
80 Schiaffino, S., & Reggiani, C. (2011). Fiber types in mammalian skeletal muscles. Physiological Reviews, 91(4), 1447–1531. https://doi.org/10.1152/physrev.00031.2010
81 Schriefer, J. L., Warden, S. J., Saxon, L. K., Robling, A. G., & Turner, C. H. (2005). Cellular accommodation and the response of bone to mechanical loading. Journal of Biomechanics, 38(9), 1838–1845. https://doi.org/10.1016/j.jbiomech.2004.08.017
82 Screen, H. R., Berk, D. E., Kadler, K. E., Ramirez, F., & Young, M. F. (2015). Tendon functional extracellular matrix. Journal of Orthopaedic Research, 33(6), 793–799. https://doi.org/10.1002/jor.22818. Wiley
83 Sela, J., Amir, D., Schwartz, Z., & Weinberg, H. (1987). Ultrastructural tissue morphometry of the distribution of extracellular matrix vesicles in remodeling rat tibial bone six days after injury. Acta Anat (Basel), 128(4), 295–300. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3037839
84 Selvanetti, A., Cipolla, M., & Puddu, G. (1997). Overuse tendon injuries: Basic science and classification. Operative Techniques in Sports Medicine, 5(3), 110–117. https://doi.org/10.1016/S1060‐1872(97)80031‐7
85 Sharma, P., & Maffulli, N. (2005). Tendon injury and tendinopathy: Healing and repair. The Journal of Bone & Joint Surgery, 87(1), 187–202. https://doi.org/10.2106/JBJS.D.01850
86 Shepherd, J. H., & Screen, H. R. (2013). Fatigue loading of tendon. International Journal of Experimental Pathology, 94(4), 260–270. https://doi.org/10.1111/iep.12037
87 Snow, M. H. (1977). The effects of aging on satellite cells in skeletal muscles of mice and rats. Cell and Tissue Research, 185(3), 399–408. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/597854
88 Sommer, B., Bickel, M., Hofstetter, W., & Wetterwald, A. (1996). Expression of matrix proteins during the development of mineralized tissues. Bone, 19(4), 371–380. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8894143
89 Srinivasan, S., Agans, S. C., King, K. A., Moy, N. Y., Poliachik, S. L., & Gross, T. S. (2003). Enabling bone formation in the aged skeleton via rest‐inserted mechanical loading. Bone, 33(6), 946–955. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14678854
90 Stecco, C., & Caro, R. (2019). 2019 Ejtm special on muscle fascia. European Journal of Translational Myology, 29(1), 8060. https://doi.org/10.4081/ejtm.2019.8060
91 Stecco, C., Macchi, V., Porzionato, A., Duparc, F., & De Caro, R. (2011). The fascia: The forgotten structure. Italian Journal of Anatomy and Embryology, 116(3), 127–138. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22852442
92 Stromberg, A., Jansson, M., Fischer, H., Rullman, E., Hagglund, H., & Gustafsson, T. (2013). Bone marrow derived cells in adult skeletal muscle tissue in humans. Skelet Muscle, 3(1), 12. https://doi.org/10.1186/2044‐5040‐3‐12
93 Taichman, R. S. (2005). Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem‐cell niche. Blood, 105(7), 2631–2639. https://doi.org/10.1182/blood‐2004‐06‐2480
94 Tortora, G. J., & Derrickson, B. H. (Eds.) (2010). Muscle. In Introduction to the human body (11th ed.). Wiley.
95 Tu, X., Rhee, Y., Condon, K. W., Bivi, N., Allen, M. R., Dwyer, D., … Bellido, T. (2012). Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone, 50(1), 209–217. https://doi.org/10.1016/j.bone.2011.10.025
96 Warden, S. J., Fuchs, R. K., Castillo, A. B., Nelson, I. R., & Turner, C. H. (2007). Exercise when young provides lifelong benefits to bone structure and strength. Journal of Bone and Mineral Research, 22(2), 251–259. https://doi.org/10.1359/jbmr.061107
97 White, T. P., & Esser, K. A. (1989). Satellite cell and growth factor involvement in skeletal muscle growth. Medicine and Science in Sports and Exercise, 21(5 Suppl), S158–S163. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2691828
98 Wijenayaka, A. R., Kogawa, M., Lim, H. P., Bonewald, L. F., Findlay, D. M., & Atkins, G. J. (2011). Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL‐dependent pathway. PLoS One, 6(10), e25900. https://doi.org/10.1371/journal.pone.0025900
99 Woo, S. L., & Buckwalter, J. A. (1988). AAOS/NIH/ORS workshop. Injury and repair of the musculoskeletal soft tissues. Savannah, Georgia, June 18–20, 1987. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 6(6), 907–931. https://doi.org/10.1002/jor.1100060615
100 Xiong, J., & O'Brien, C. A. (2012). Osteocyte RANKL: New insights into the control of bone remodeling. Journal of Bone and Mineral Research, 27(3), 499–505. https://doi.org/10.1002/jbmr.1547
101 Yamaguchi, A., Katagiri, T., Ikeda, T., Wozney, J. M., Rosen, V., Wang, E. A., … Yoshiki, S. (1991). Recombinant human bone morphogenetic protein‐2 stimulates osteoblastic maturation and inhibits myogenic differentiation in vitro. Journal of Cell Biology, 113(3), 681–687. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1849907
102 Yang, Y. J. (2010). Histology of the bone. http://www.emedicine.com/orthoped.htm.
103 Young, B., & Heath, J. W. (2000). In B. Young & J. W. Heath (Eds.), Wheater’s functional histology. Philadelphia: Churchill Livingstone, in imprint of Harcourt Publishers Limited.
104 Zhang, P., Sun, Q., Turner, C. H., & Yokota, H. (2007). Knee loading accelerates bone healing in mice. Journal of Bone and Mineral Research, 22(12), 1979–1987. https://doi.org/10.1359/jbmr.070803
105 Zitnay, J. L., & Weiss, J. A. (2018). Load transfer, damage, and failure in ligaments and tendons. Journal of Orthopaedic Research, 36(12), 3093–3104. https://doi.org/10.1002/jor.24134