Читать книгу Человек, бизнес и искусственный интеллект - Сергей Толкачев - Страница 15
Как роботы влияют на логистику
ОглавлениеОбычная проблема складов заключается в невозможности идеально организовать пространство. Между стеллажами и паллетами оставляют достаточно широкие проходы, которые позволяют людям свободно перемещаться с грузом, когда они передвигают его вручную или при помощи техники. За счет этого склады занимают большую территорию и нуждаются в сложном обслуживании.
Роботы достаточно эффективно решают эту проблему. Они без проблем поднимают, удерживают и переносят сложные грузы, доставляют их к специалистам, занимающимся сортировкой, а также очень быстро перемещаются по складам. Привлечение роботов к работе на складах позволило таким крупным компаниям как Amazon и L’Oreal существенно повысить продуктивность, уменьшить число несчастных случаев на складах. Как заверяет один из разработчиков складских машин, Джо Каракаппа, занимающий пост вице-президента компании Symbotic, вскоре такие роботы помогут в два раза уменьшить территорию любого склада.
Люди, которые до этого управляли погрузчиками вручную, а также выполняли сложные и опасные задачи, теперь могут переключиться на более интересную и разнообразную работу – некоторые продолжают заниматься сборкой заказов, другие посвящают время ремонту и обучению роботов.
Однако размеры складов и сложность протекающих в них процессов – далеко не все проблемы современных предпринимателей, занимающихся доставкой товаров. Чаще всего система логистики сталкивается с множеством вопросов, которые приходится решать слишком быстро – запросы людей растут, скорость операций повышается.
Весьма распространенные в наше время маркетплейсы сотрудничают с сотнями разных поставщиков и получателей, и это вынуждает их оперировать массивным объемом данных. При этом каждый отправитель и получатель имеют свои особенности и запросы, и информацию обо всех этих тонкостях собирает, структурирует и предоставляет специалистам искусственный интеллект. Будучи встроенным в логистические цепочки, он позволяет понять, как протекают те или иные процессы, в чем нуждаются поставщики, как часто они задерживают товар.
В работе самих складов машины также берут на себя интеллектуальный компонент – они подсчитывают количество оставшегося товара, а также отслеживают динамику, с которой раскупают те или иные позиции. Это позволяет управляющим составлять прогнозы, вовремя восполнять нужные образцы продукции, работая без ошибок и сбоев.
Неправильно устроенная логистика может привести к большим затратам – сюда включаются расходы на топливо, оплату труда, а также издержки, возникающие из-за неправильного учета продукции. Каждый производитель мог бы терять значительно меньше средств, если бы получил возможность точно прогнозировать динамику спроса на те или иные товары. Данные, которые предоставляют машины, позволяют приблизиться к желаемому результату и добиться в этом деле серьезных успехов. При правильном использовании ИИ в работе логистической системы крупные производители могут снизить объем нереализованных товаров почти на треть – это огромные средства, которые можно направить на другие, более креативные и продуктивные задачи.
В масштабе мирового лидера Procter & Gamble такие перемены могут сокращать ненужные расходы почти на 1 млрд. долларов ежегодно.