Читать книгу Some Salient Points in the Science of the Earth - Sir John William Dawson - Страница 8

Оглавление

[4] "Stellar Evolution."

[5] Other facts favour the shorter time (Clarence King, Am. Jl. of Science, vol. xlv., 3rd series).

What do we know of the oldest and most primitive rocks? At this moment the question may be answered in many and discordant ways; yet the leading elements of the answer may be given very simply. The oldest rock formation known to geologists is the Lower Laurentian, the Fundamental Gneiss, the Lewisian formation of Scotland, the Ottawa gneiss of Canada, the lowest Archæan crystalline rocks. This formation, of enormous thickness, corresponds to what the older geologists called the fundamental granite, a name not to be scouted, for gneiss is only a stratified or laminated granite. Perhaps the main fact in relation to this old rock is that it is a gneiss; that is, a rock at once bedded and crystalline, and having for its dominant ingredient the mineral orthoclase, a compound of silica, alumina and potash, in which are imbedded, as in a paste, grains and crystals of quartz and hornblende. We know very well from its texture and composition that it cannot be a product of mere heat, and being a bedded rock we infer that it was laid down layer by layer in the manner of aqueous deposits. On the other hand, its chemical composition is quite different from that of the muds, sands and gravels usually deposited from water. Their special characters are caused by the fact that they have resulted from the slow decay of rocks like these gneisses, under the operation of carbon dioxide and water, whereby the alkaline matter and the more soluble part of the silica have been washed away, leaving a residue mainly silicious and aluminous.[6] Such more modern rocks tell of dry land subjected to atmospheric decay and ram-wash. If they have any direct relation to the old gneisses, they are their grandchildren, not their parents. On the contrary, the oldest gneisses show no pebbles or sand or limestone—nothing to indicate that there was then any land undergoing atmospheric waste, or shores with sand and gravel. For all that we know to the contrary, these old gneisses may have been deposited in a shoreless sea, holding in solution or suspension merely what it could derive from a submerged crust recently cooled from a state of fusion, still thin, and exuding here and there through its fissures heated waters and volcanic products. This, it may be observed here, is just what we have a right to expect, if the earth was once a heated or fluid mass, and if our oldest Laurentian rocks consist of the first beds or layers deposited upon it, perhaps by a heated ocean. It has been well said that "the secret of the earth's hot youth has been well kept." But with the help of physical science we can guess at an originally heat-liquefied ball with denser matter at its centre, lighter and oxidised matter at its surface. We can imagine a scum or crust forming at the surface; and from what we know of the earth's interior, nothing is more likely to have constituted that slaggy crust than the material of our old gneisses. As to its bedded character, this may have arisen in part from the addition of cooling layers below, in part from the action of heated water above, and in part from pressure or tension; while, wherever it cracked or became broken, its interstices would be injected with molten matter from beneath. All this may be conjecture, but it is based on known facts, and is the only probable conjecture. If correct, it would account for the fact that the gneissic rocks are the lowest and oldest that we reach in every part of the earth.

[6] Carbon dioxide, the great agent in the decay of silicious rocks, must then have constituted a very much larger part of the atmosphere than at present.

In short, the fundamental gneiss of the Lower Laurentian may have been the first rock ever formed; and in any case it is a rock formed under conditions which have not since recurred, except locally. It constitutes the first and best example of those chemico-physical, aqueous or aqueo-igneous rocks, so characteristic of the earliest period of the earth's history. Viewed in this way the Lower Laurentian gneiss is probably the oldest kind of rock we shall ever know the limit to our backward progress, beyond which there remains nothing to the geologist except physical hypotheses respecting a cooling incandescent globe. For the chemical conditions of these primitive rocks, and what is known as to their probable origin, I may refer to the writings of my friends, the late Dr. Sterry Hunt and Dr. J. G. Bonney, to whom we owe so much of what is known of the older crystalline rocks[7] as well as of their literature, and the questions which they raise. My purpose here is to sketch the remarkable difference which we meet as we ascend into the Middle and Upper Laurentian.

[7] Hunt, "Essays on Chemical Geology"; Bonney, "Addresses to British Association and Geological Society of London."

In the next succeeding formation, the middle part of the Laurentian of Logan, the Grenville series of Canada, we meet with a great and significant change. It is true we have still a predominance of gneisses which may have been formed in the same manner with those below them; but we find these now associated with great beds of limestone and dolomite, which must have been formed by the separation of calcium and magnesium carbonates from the sea water, either by chemical precipitation or by the agency of living beings. We have also quartzite, quartzose gneisses, and even pebble beds, which inform us of sandbanks and shores. Nay, more, we have beds containing graphite which must be the residue of plants, and iron ores which tell of the deoxidation of iron oxide by organic matters. In short, here we have evidence of new factors in world-building, of land and ocean, of atmospheric decay of rocks, of deoxidizing processes carried on by vegetable life on the land and in the waters, of limestone-building in the sea. To afford material for such rocks, the old Ottawa gneiss must have been lifted up into continents and mountain masses by bendings and foldings of the original crust. Under the slow but sure action of the carbon dioxide dissolved in rainwater, its felspar had crumbled down in the course of ages. Its potash, soda, lime, magnesia, and part Of its silica had been washed into the sea, there to enter into new combinations and to form new deposits. The crumbling residue of fine clay and sand had been also washed down into the borders of the ocean, and had been there deposited in beds. Thus the earth had entered into a new phase, which continues onward through the geological ages; and I place in the reader's hands one key for unlocking the mystery of the world in affirming that this great change took place, this new era was inaugurated in the midst of the Laurentian period, the oldest of our great divisions of the earth's geological history.[8]

[8] I follow the original arrangement of Logan, who first defined this succession in the extensive and excellent exposures of these rocks in Canada. Elsewhere the subject has often been confused and mixed with local details. The same facts, though sometimes under different names, are recorded by the geologists of Scandinavia, Britain, and the United States, and the acceptance of the conclusions of Nicol and Lapworth has served to bring even the rocks of the Highlands of Scotland more into line with those of Canada.

Was not this a fit period for the first appearance of life? should we not expect it to appear, independently of the evidence of the fact, so soon at least as the temperature of the ocean falls sufficiently low to permit its existence?[9] I do not propose to enter here into that evidence. This we shall have occasion to consider in the sequel. I would merely say here that we should bear in mind that in this latter half of the Lower Laurentian, or if we so choose to style it, Middle Laurentian period, we have the conditions required for life in the sea and on the land; and since in other periods we know that life was always present when its conditions were present, it is not unreasonable to look for the earliest traces of life in this formation, in which we find, for the first time, the completion of those physical arrangements which make life, in such forms of it as exist in the sea, possible.

[9] Dana states this at 180°F. for plants and 120° for animals.

This is also a proper place to say something of the disputed doctrine of what is termed metamorphism, or the chemical and molecular changes which old rocks have undergone.

The Laurentian rocks are undoubtedly greatly changed from their original state, more especially in the matters of crystallization and the formation of disseminated minerals, by the action of heat and heated water. Sandstones have thus passed into quartzites, clays into slates and schists, limestones into marbles. So far, metamorphism is not a doubtful question; but when theories of metamorphism go so far as to suppose an actual change of one element for another, they go beyond the bounds of chemical credibility; yet such theories of metamorphism are often boldly advanced and made the basis of important conclusions. Dr. Hunt has happily given the name "metasomatosis" to this imaginary and improbable kind of metamorphism. I would have it to be understood that, in speaking of the metamorphism of the older crystalline rocks, it is not to this metasomatosis that I refer, and that I hold that rocks which have been produced out of the materials decomposed by atmospheric erosion can never by any process of metamorphism be restored to the precise condition of the Laurentian rocks. Thus, there is in the older formations a genealogy of rocks, which, in the absence of fossils, may be used with some confidence, but which does not apply to the more modern deposits, and which gives a validity to the use of mineral character in classifying older rocks which does not hold for later formations. Still, nothing in geology absolutely perishes, or is altogether discontinued; and it is probable that, down to the present day, the causes which produced the old Laurentian gneiss may still operate in limited localities. Then, however, they were general, not exceptional. It is further to be observed that the term gneiss is sometimes of wide and even loose application. Beside the typical orthoclase and hornblendic gneiss of the Laurentian, there are micaceous, quartzose, garnetiferous and many other kinds of gneiss; and even gneissose rocks, which hold labradorite or anorthite instead of orthoclase, are sometimes, though not accurately, included in the term.

The Grenville series, or Middle Laurentian, is succeeded by what Logan in Canada called the Upper Laurentian, and which other geologists have called the Norite or Norian series. Here we still have our old friends the gneisses, but somewhat peculiar in type, and associated with them are great beds and masses, rich in lime-felspar, the so-called labradorite and anorthite rocks. The precise 'origin of these is uncertain, but this much seems clear, namely, that they originated in circumstances in which the great limestones deposited in the Lower or Middle Laurentian were beginning to be employed in the manufacture, probably by aqueo-igneous agencies, of lime-felspars. This proves the Norian rocks to be younger than the Lower Laurentian, and that, as Logan supposed, considerable earth-movements had occurred between the two, implying lapse of time, while it is also evident that the folding and crumpling of the Lower Laurentian had led to great outbursts of igneous matter from below the crust, or from its under part.

Next to the Laurentian, but probably after an interval, the rocks of which are yet scarcely known, we have the Huronian of Logan, a series much less crystalline and more fragmentary, and affording more evidence of land elevation and atmospheric and aqueous erosion than those preceding it. It has extensive beds of volcanic rock, great conglomerates, some of them made up of rounded fragments of Laurentian rocks, and others of quartz pebbles, which must have been the remains of rocks subjected to very perfect decay. The pure quartz-rocks tell the same tale, while slates and limestones speak also of chemical separation of the materials of older rocks. The Huronian evidently tells of previous movements in the Laurentian, and changes which allowed the Huronian to be deposited along its shores and on the edges of its beds. Yet the Huronian itself is older than the Palæozoic series, and affected by powerful earth-movements at an earlier date. Life existed in the waters in Huronian times. We have spicules of sponges in the limestone, and organic markings on the slaty beds; but they are few, and their nature is uncertain.

Succeeding the Huronian, and made up of its débris and that of the Laurentian, we have the great Cambrian series, that in which we first find undoubted evidence of abundant marine life, and which thus forms the first chapter in the great Palæozoic book of the early history of the world. Here let it be observed we have at least two wide gaps in our history, marked by the crumpling up, first, of the Laurentian, and then of the Huronian beds.

After what has been said, the reader will perhaps not be astonished that fierce geological battles have raged over the old crystalline rocks. By some geologists they are almost entirely explained away, or referred to igneous action, or to the alteration of ordinary sediments. Under the treatment of another school they grow to great series of Pre-Cambrian rocks, constituting vast systems of formations, distinguishable from each other chiefly by differences of mineral character. Facts and fossils are daily being discovered, by which these disputes will ultimately be settled.

After the solitary appearance of Eozoon in the Laurentian, and of a few uncertain forms in the Huronian, we find ourselves, in the Cambrian, in the presence of a nearly complete invertebrate fauna of protozoa, polyps, echinoderms, mollusks and Crustacea, and this not confined to one locality merely, but apparently extended simultaneously throughout the ocean, over the whole world. This sudden incoming of animal life, along with the subsequent introduction of successive groups of invertebrates, and finally of vertebrate animals, furnishes one of the greatest unsolved problems of geology, which geologists were wont to settle by the supposition of successive creations. In the sequel I shall endeavour to set forth the facts as to this succession, and the general principles involved in it, and to show the insufficiency of certain theories of evolution suggested by biologists to give any substantial aid to the geologist in these questions. At present I propose merely to notice some of the general principles which should guide us in studying the development of life in geological time, and the causes which have baffled so many attempts to throw light on this obscure portion of our unsolved problems.

It has been urged on the side of rational evolution—and there are both rational and irrational forms of this many-sided doctrine—that this hypothesis does not profess to give an explanation of the absolute origin of life on our planet, or even of the original organization of a single cell, or of a simple mass of protoplasm, living or dead. All experimental attempts to produce by synthesis the complex albuminous substances, or to obtain the living from the non-living, have so far been fruitless, and indeed we cannot imagine any process by which such changes could be effected. That they have been effected we know, but the process employed by their maker is still as mysterious to us as it probably was to him who wrote the words:—"And God said, Let the waters swarm with swarmers." How vast is the gap in our knowledge and our practical power implied in this admission, which must, however, be made by every mind not absolutely blinded by a superstitious belief in those forms of words which too often pass current as philosophy.

But if we are content to start with a number of organisms ready made—a somewhat humiliating start, however—we still have to ask—How do these vary so as to give new species? It is a singular illusion, and especially in the case of men who profess to be believers in natural law, that variation may be boundless, aimless and fortuitous, and that it is by spontaneous selection from varieties thus produced that development arises. But surely the supposition of mere chance and magic is unworthy of science. Varieties must have causes, and their causes and their effects must be regulated by some law or laws. Now it is easy to see that they cannot be caused by a mere innate tendency in the organism itself. Every organism is so nicely equilibrated that it has no such spontaneous tendency, except within the limits set by its growth and the law of its periodical changes. There may, however, be equilibrium more or less stable. I believe all attempts hitherto made have failed to account for the fixity of certain, nay, of very many, types throughout geological time, but the mere consideration that one may be in a more stable state of equilibrium than another, so far explains it. A rocking stone has no more spontaneous tendency to move than an ordinary boulder, but it may be made to move with a touch. So it probably is with organisms. But if so, then the causes of variation are external, as in many cases we actually know them to be, and they must depend on instability with change in surroundings, and this so arranged as not to be too extreme in amount, and to operate in some determinate direction. Observe how remarkable the unity of the adjustments involved in such a supposition!—how superior they must be to our rude and always more or less unsuccessful attempts to produce and carry forward varieties and races in definite directions! This cannot be chance. If it exists, it must depend on plans deeply laid in the nature of things, else it would be most monstrous magic and causeless miracle. Still more certain is this conclusion when we consider the vast and orderly succession made known to us by geology, and which must have been regulated by fixed laws, only a few of which are as yet known to us.

Beyond these general considerations we have others of a more special character, based on palæontological facts, which show how imperfect are our attempts as yet to reach the true causes of the introduction of genera and species.

One is the remarkable fixity of the leading types of living beings in geological time. If, instead of framing, like Haeckel, fanciful phylogenies, we take the trouble, with Barrande and Gaudry, to trace the forms of life through the period of their existence, each along its own line, we shall be greatly struck with this, and especially with the continuous existence of many low types of life through vicissitudes of physical conditions of the most stupendous character, and over a lapse of time scarcely conceivable. What is still more remarkable is that this holds in groups which, within certain limits, are perhaps the most variable of all. In the present world no creatures are individually more variable than the protozoa; as, for example, the foraminifera and the sponges. Yet these groups are fundamentally the same, from the beginning of the Palæozoic until now, and modern species seem scarcely at all to differ from specimens procured from rocks at least half-way back to the beginning of our geological record. If we suppose that the present sponges and foraminifera are the descendants of those of the Silurian period, we can affirm that in all that vast lapse of time they have, on the whole, made little greater change than that which may be observed in variable forms at present. The same remark applies to other low animal forms. In types somewhat higher and less variable, this is almost equally noteworthy. The pattern of the venation of the wings of cockroaches, and the structure and form of land snails, gally-worms and decapod crustaceans were all settled in the Carboniferous age, in a way that still remains. So were the foliage and the fructification of club mosses and ferns. If, at any time, members of these groups branched off, so as to lay the foundation of new species, this must have been a very rare and exceptional occurrence, and one demanding even some suspension of the ordinary laws of nature.

We may perhaps be content on this question to say with Gaudry,[10] that it is not yet possible to "pierce the mystery that surrounds the development of the great classes of animals," or with Prof. Williamson,[11] that in reference to fossil plants "the time has not yet arrived for the appointment of a botanical King-at-arms and Constructor of pedigrees." We shall, however, find that by abandoning mere hypothetical causes and carefully noting the order of the development and the causes in operation, so far as known, we may reach to ideas as to cause and mode, and the laws of succession, even if unable to penetrate the mystery of origins.

[10] "Enchainements du Monde Animal," Paris, 1883.

[11] Address before Royal Institution, Feb., 1883.

Another caution which a palæontologist has occasion to give with regard to theories of life, has reference to the tendency of biologists to infer that animals and plants were introduced under embryonic forms, and at first in few and imperfect species. Facts do not substantiate this. The first appearance of leading types of life is rarely embryonic, or of the nature of immature individuals. On the contrary, they often appear in highly perfect and specialized forms, often, however, of composite type and expressing characters afterwards so separated as to belong to higher groups. The trilobites of the Cambrian are some of them of few segments, and so far embryonic, but the greater part are many-segmented and very complex. The batrachians of the Carboniferous present many characters higher than those of their modern successors and now appropriated to the true reptiles. The reptiles of the Permian and Trias usurped some of the prerogatives of the mammals. The ferns, lycopods and equisetums of the Devonian and Carboniferous were, in fructification, not inferior to their modern representatives, and in the structure of their stems far superior. The shell-bearing cephalopods of the Palæozoic would seem to have possessed structures now special to a higher group, that of the cuttle-fishes. The bald and contemptuous negation of these facts by Haeckel and other biologists does not tend to give geologists much confidence in their dicta.

Again, we are now prepared to say that the struggle for existence, however plausible as a theory, when put before us in connection with the productiveness of animals and the few survivors of their multitudinous progeny, has not been the determining cause of the introduction of new species. The periods of rapid introduction of new forms of marine life were not periods of struggle, but of expansion—those periods in which the submergence of continents afforded new and large space for their extension and comfortable subsistence. In like manner, it was continental emergence that afforded the opportunity for the introduction of land animals and plants. Further, in connection with this, it is now an established conclusion that the great aggressive faunas and floras of the continents have originated in the north, some of them within the arctic circle, and this in periods of exceptional warmth, when the perpetual summer sunshine of the arctic regions coëxisted with a warm temperature. The testimony of the rocks thus is that not struggle but expansion furnished the requisite conditions for new forms of life, and that the periods of struggle were characterized by depauperation and extinction.

But we are sometimes told that organisms are merely mechanical, and that the discussions respecting their origin have no significance any more than if they related to rocks or crystals, because they relate merely to the organism considered as a machine, and not to that which may be supposed to be more important, namely, the great determining power of mind and will. That this is a mere evasion by which we really gain nothing, will appear from a characteristic extract of an article by an eminent biologist in the new edition of the Encyclopedia Britannica, a publication which, I am sorry to say, instead of its proper rôle as a repertory of facts, has admitted partisan papers, stating extreme and unproved speculations as if they were conclusions of science. The statement referred to is as follows:—"A mass of living protoplasm is simply a molecular machine of great complexity, the total results of the working of which, or its vital phenomena, depend on the one hand on its construction, and on the other, on the energy supplied to it; and to speak of vitality as anything but the name for a series of operations is as if one should talk of the horologity of a clock." It would, I think, scarcely be possible to put into the same number of words a greater amount of unscientific assumption and unproved statement than in this sentence. Is "living protoplasm" different in any way from dead protoplasm, and if so, what causes the difference? What is a "machine"? Can we conceive of a self-produced or uncaused machine, or one not intended to work out some definite results? The results of the machine in question are said to be "vital phenomena"; certainly most wonderful results, and greater than those of any machine man has yet been able to construct. But why "vital"? If there is no such thing as life, surely they are merely physical results. Can mechanical causes produce other than physical effects? To Aristotle life was "the cause of form in organisms." Is not this quite as likely to be true as the converse proposition? If the vital phenomena depend on the "construction" of the machine, and the "energy supplied to it," whence this construction and whence this energy? The illustration of the clock does not help us to answer this question. The construction of the clock depends on its maker, and its energy is derived from the hand that winds it up. If we can think of a clock which no one has made, and which no one winds, a clock constructed by chance, set in harmony with the universe by chance, wound up periodically by chance, we shall then have an idea parallel to that of an organism living, yet without any vital energy or creative law; but in such a case we should certainly have to assume some antecedent cause, whether we call it "horologity" or by some other name. Perhaps the term evolution would serve as well as any other, were it not that common sense teaches that nothing can be spontaneously evolved out of that in which it did not previously exist.

There is one other unsolved problem in the study of life by the geologist to which it is still necessary to advert. This is the inability of palæontology to fill up the gaps in the chain of being. In this respect we are constantly taunted with the imperfection of the record, a matter so important that it merits a separate treatment; but facts show that this is much more complete than is generally supposed. Over long periods of time and many lines of being we have a nearly continuous chain, and if this does not show the tendency desired, the fault is as likely to be in the theory as in the record. On the other hand, the abrupt and simultaneous appearance of new types in many specific and generic forms and over wide and separate areas at one and the same time, is too often repeated to be accidental. Hence palæontologists, in endeavouring to establish evolution, have been obliged to assume periods of exceptional activity in the introduction of species, alternating with others of stagnation, a doctrine differing very little from that of special creation, as held by the older geologists.

The attempt has lately been made to account for these breaks by the assumption that the geological record relates only to periods of submergence, and gives no information as to those of elevation. This is manifestly untrue. In so far as marine life is concerned, the periods of submergence are those in which new forms abound for very obvious reasons, already hinted; but the periods of new forms of land and fresh-water life are those of elevation, and these have their own records and monuments, often very rich and ample, as, for example, the swamps of the Carboniferous, the transition from the great Cretaceous subsidence, when so much of the land of the Northern Hemisphere was submerged, to the new continents of the Tertiary, the Tertiary lake-basins of Western America, the Terraces and raised beaches of the Pleistocene. Had I time to refer in detail to the breaks in the continuity of life which cannot be explained by the imperfection of the record, I could show at least that nature in this case does advance per saltum—by leaps, rather than by a slow continuous process. Many able reasoners, as Le Conte, in America, and Mivart and Collard in England, hold this view.

Here, as elsewhere, a vast amount of steady conscientious work is required to enable us to solve the problems of the history of life. But if so, the more the hope for the patient student and investigator. I know nothing more chilling to research, or unfavourable to progress, than the promulgation of a dogmatic decision that there is nothing to be learned but a merely fortuitous and uncaused succession, amenable to no law, and only to be covered, in order to hide its shapeless and uncertain proportions, by the mantle of bold and gratuitous hypothesis.

So soon as we find evidence of continents and oceans we raise the question, Have these continents existed from the first in their present position and form, or have the land and water changed places in the course of geological time? This question also deserves a separate and more detailed consideration. In reality both statements are true in a certain limited sense. On the one hand, any geological map whatever suffices to show that the general outline of the existing land began to be formed in the first and oldest crumplings of the crust. On the other hand, the greater part of the surface of the land consists of marine sediments which must have been deposited when the continents were in great part submerged, and whose materials must have been derived from land that has perished in the process, while all the continental surfaces, except, perhaps, some high peaks and ridges, have been many times submerged. Both of these apparently contradictory statements are true; and without assuming both, it is impossible to explain the existing contours and reliefs of the surface.

In exceptional cases even portions of deep sea have been elevated, as in the case of the Polycistine deposits in the West Indies; but these exceptions are as yet scarcely sufficient to prove the rule.

In the case of North America, the form of the old nucleus of Laurentian rock in the north already marks out that of the finished continent, and the successive later formations have been laid upon the edges of this, like the successive loads of earth dumped over an embankment. But in order to give the great thickness of the Palæozoic sediments, the land must have been again and again submerged, and for long periods of time. Thus, in one sense, the continents have been fixed; in another, they have been constantly fluctuating. Hall and Dana have well illustrated these points in so far as eastern North America is concerned. Prof. Hull of the Geological Survey of Ireland has had the boldness to reduce the fluctuations of land and water, as evidenced in the British Islands, to the form of a series of maps intended to show the physical geography of each successive period. The attempt is probably premature, and has been met with much adverse criticism; but there can be no doubt that it has an element of truth. When we attempt to calculate what could have been supplied from the old Eozoic nucleus by decay and aqueous erosion, and when we take into account the greater local thickness of sediments towards the present sea-basins, we can scarcely avoid the conclusion that extensive areas once occupied by high land are now under the sea. But to ascertain the precise areas and position of these perished lands may now be impossible.

In point of fact we are obliged to believe in the contemporaneous existence in all geological periods, except perhaps the very oldest, of three sorts of areas on the surface of the earth: (1) Oceanic areas of deep sea, which must always have occupied the bed of the present ocean, or parts of it; (2) Continental plateaus sometimes existing as low flats, or as higher table-lands, and sometimes submerged; (3) Areas of plication or folding, more especially along the borders of the oceans, forming elevated lands rarely submerged and constantly affording the material of sedimentary accumulations. We shall find, however, that these have changed places in a remarkable manner, though always in such a way that neither the life of the land nor of the waters was wholly extinguished in the process.

Every geologist knows the contention which has been occasioned by the attempts to correlate the earlier Palæozoic deposits of the Atlantic margin of North America with those forming at the same time on the interior plateau, and with those of intervening lines of plication and igneous disturbance. Stratigraphy, lithology and fossils are all more or less at fault in dealing with these questions, and while the general nature of the problem is understood by many geologists, its solution in particular cases is still a source of apparently endless debate.

The causes and mode of operation of the great movements of the earth's crust which have produced mountains, plains and table-lands, are still involved in some mystery. One patent cause is the unequal settling of the crust towards the centre; but it is not so generally understood as it should be, that the greater settlement of the ocean-bed has necessitated its pressure against the sides of the continents in the same manner that a huge ice-floe crushes a ship or a pier. The geological map of North America shows this at a glance, and impresses us with the fact that large portions of the earth's crust have not only been folded but bodily pushed back for great distances. On looking at the extreme north, we see that the great Laurentian mass of central Newfoundland has acted as a projecting pier to the space immediately west of it, and has caused the gulf of St. Lawrence to remain an undisturbed area since Palæozoic times. Immediately to the south of this, Nova Scotia and New Brunswick are folded back. Still farther south, as Guyot has shown, the old sediments have been crushed in sharp folds against the Adirondack mass, which has sheltered the table-land of the Catskills and of the great lakes. South of this again the rocks of Pennsylvania and Maryland have been driven back in a great curve to the west. Movements of this kind on the Pacific coast of America have been still more stupendous, as well as more recent. Dr. G. M. Dawson[12] thus refers to the crushing action of the Pacific bed on the rocks of British Columbia, and this especially at two periods, the close of the Triassic and the close of the Cretaceous: "The successive foldings and crushings which the Cordillera region has suffered have resulted in an actual change of position of the rocks now composing its western margin. This change may have amounted since the beginning of Mesozoic time to one-third of its whole present width, which would place the line of the coast ranges about two degrees of longitude farther west." Here we have evidence that a tract of country 400 miles wide and consisting largely of mountain ranges and table-lands, has been crushed bodily back over two degrees of longitude; and this applies not to British Columbia merely, but to the whole west coast from Alaska to Chili. Yet we know that any contraction of the earth's nucleus can crumple up only a very thin superficial crust, which in this case must have slid over the pasty mass below.[13] Let it be observed, however, that the whole lateral pressure of vast areas has been condensed into very narrow lines. Nothing, I think, can more forcibly show the enormous pressure to which the edges of the continents have been exposed, and at the same time the great sinking of the hard and resisting ocean-beds. Complex and difficult to calculate though these movements of plication are, they are more intelligible than the apparently regular pulsations of the flat continental areas, whereby they have alternately been below and above the waters, and which must have depended on somewhat regularly recurring causes, connected either with the secular cooling of the earth or with the gradual retardation of its rotation, or with both. There is, however, good reason to believe that the successive subsidences alternated with the movements of plication, and depended on upward bendings of the ocean floor, and also on the gradual slackening of the rotation of the earth. Throughout these changes, each successive elevation exposed the rocks for long ages to the decomposing influence of the atmosphere. Each submergence swept away and deposited as sediment the material accumulated by decay. Every change of elevation was accompanied with changes of climate, and with modifications of the habitats of animals and plants. Were it possible to restore accurately the physical geography of the earth in all these respects, for each geological period, the data for the solution of many difficult questions would be furnished.

[12] Trans. Royal Society of Canada, 1890.

[13] This view is quite consistent with the practical solidity of the earth, and with the action of local expansion by heat, of settlement of areas overloaded with sediment, and of downward sliding of beds. This we shall see in the sequel.

We have wandered through space and time sufficiently for one chapter, and some of the same topics must come up later in other connections. Let us sum up in a word. In human history we are dealing with the short lives and limited plans of man. In the making of worlds we are conversant with the plans of a Creator with whom one day is as a thousand years, and a thousand years as one day. We must not measure such things by our microscopic scale of time. Nor should we fail to see that vast though the ages of the earth are, they are parts of a continuous plan, and of a plan probably reaching in space and time immeasurably beyond our earth. When we trace the long history from an incandescent fire-mist to a finished earth, and vast ages occupied by the dynasties of plant and animal life, we see not merely a mighty maze, an almost endless procession of changes, but that all of these were related to one another by a chain of causes and effects leading onward to greater variety and complexity, while retaining throughout the traces of the means employed. The old rocks and the ancient lines of folding and the perished forms of life are not merely a scaffolding set up to be thrown down, but the foundation stones of a great and symmetrical structure. Is it yet completed? Who can tell? The earth may still be young, and infinite ages of a better history may lie before it.

References[14]:—Presidential Address to the American Association for the Advancement of Science, meeting at Minneapolis, 1883. "The Story of the Earth and Man." Ninth edition, London, 1887.

[14] The references in this and succeeding chapters are exclusively to papers and works by the author, on which the several chapters are based.

Some Salient Points in the Science of the Earth

Подняться наверх