Читать книгу Курс Трубопроводная арматура. Модуль Краткий курс для менеджеров - Станислав Львович Горобченко - Страница 5

1. Трубопроводная арматура. Основные положения
1.4. Базовые конструкции арматуры

Оглавление

Рабочая среда должна полностью сохраняться в трубопроводе так, чтобы не подвергать опасности персонал и окружающую среду и не допускать собственного загрязнения. Трубопроводы имеют много потенциальных мест утечек соединения труб, сварные швы, присоединения оборудования и, наконец, арматуры. Арматура может причинять самую большую головную боль на объекте, если, например, неправильно выбрана, плохо спроектирована, изготовлена с низким качеством или, не обладая огнестойкостью, установлена в пожароопасную окружающую среду.


Правильно подобранная арматура должна работать, по крайней мере, в течение жизни предприятия с минимальными затратами на обслуживание. Поэтому, понимание основных технических требований к конструкциям арматуры должно стать важным фактором в обучении любого инженера предприятия и инженера по обслуживанию трубопроводов.


Выбор материалов

Существует широкий диапазон материалов, способных обеспечить самые серьезные условия эксплуатации арматуры. Следует обоснованно выбирать материалы для каждой детали: корпуса, крышки, узла уплотнения, шпинделя, ходовой гайки, мест соединений и так далее, чтобы достигнуть оптимального сочетания и удовлетворить условия эксплуатации в течение всего срока службы.


Материалами, наиболее часто применяемыми в конструкциях арматуры, являются чугун, углеродистая, легированная и нержавеющая сталь, бронза, другие медесодержащие и никелевые сплавы, реже используются титан и алюминий. Чугунная и бронзовая арматура эксплуатируется при сравнительно невысоких температурах –200…260°С. Углеродистые и нержавеющие стали применяются для более низких и более высоких температур. Для сверхнизких (криогенных) температур ниже -196°С употребляются высоколегированные нержавеющие стали и сплавы.


Для высококоррозионных рабочих сред, или сред, вступающих в химическую реакцию с металлическими поверхностями, и, чтобы предотвратить загрязнение среды, арматура должна быть покрыта защитными материалами (эбонитом, пластмассами, стеклом или керамикой).


Цельнопластмассовая арматура все более и более выступает как альтернатива нержавеющей стали или сплавам. Пластмассовая арматура изготавливается из разнообразных материалов и показала удовлетворительные результаты в применении для систем с агрессивными химическими соединениями типа слабых кислот и для чрезвычайно коррозионных рабочих сред. Некоторые из используемых материалов – непластифицированный поливинилхлорид (UPVC), акрилонитрил бутадиенстирен (ABS), полипропилен (PP) и полиэтилен (PE). Пластмассовая арматура может использоваться для низкого давления, а для более высоких давлений на пластмассовых трубопроводах используются стальные клапаны.


Все больше начинает использоваться и композитная арматура, например из армированного стеклопластика. Этот материал оказался особенно устойчив в агрессивных средах, имеет хорошие прочностные и пластические свойства. Это привело к тому, что он становится все более востребованным на химических производствах, участках химводоподготовки ТЭС и др., заменяя собой не только арматуру из высоколегированных металлов, но и арматуру из пластмасс.


Прочность арматуры

Корпус арматуры – главная деталь, работающая под давлением и служащая основным элементом для всех других деталей. Он должен быть достаточно мощным для противостояния давлению и температуре среды изнутри и нагрузкам, возникающим от монтажа на трубопроводах и привода снаружи. Вид арматуры, рабочее давление, метод изготовления, материал и цена – всё должно рассматриваться, и должно быть учтено разнообразие потенциальных мест утечек через корпус, разъём корпуса с крышкой, уплотнительные поверхности, уплотнение шпинделя и присоединение к трубопроводу.


При прочностных и силовых расчётах следует учитывать в совокупности нагрузки от рабочего давления, монтажных усилий и динамических воздействий, возникающих при контакте перемещающегося штока с корпусными деталями.


Полнопроходная или зауженная арматура

Некоторые виды арматуры, в особенности задвижки и шаровые краны, могут быть разработаны с полным или зауженным проходом. Полный проход означает равенство диаметров проходного сечения арматуры и трубопровода и применяется в арматуре, используемой в системах с незначительными перепадами рабочего давления, а также там, где требуется обеспечить беспрепятственный проход для чистящих трубопроводы ершей.


Зауженный проход с диаметром прохода, обычно уменьшаемым до следующего меньшего стандартного условного диаметра, используется, чтобы сэкономить вес, материал и, следовательно, стоимость. Использование зауженного прохода, однако, увеличивает гидравлическое сопротивление и скорость пропуска среды. Это может привести к чрезмерному кавитационному износу и шуму в системе в случаях, когда давление на входе близко к давлению парообразования протекающей жидкости при температуре эксплуатации и затруднениям при ручном управлении арматурой.


При установке в трубопроводную систему зауженной арматуры происходит некоторое увеличение общего коэффициента сопротивления системы. Это может ухудшить её гидравлические характеристики при низких давлениях (например, самотёк жидкостей под воздействием статического напора). Если же система находится под давлением, создаваемым насосом, установка зауженной арматуры оказывает незначительное влияние на сопротивление системы и может быть оправдана. Так, заужение до 0,7 от полного прохода может увеличивать потери до 10 %, что для арматуры из высоколегированных сталей с учетом уменьшения стоимости такой арматуры часто считается допустимым.


Однако можно отметить, что для регулирующей арматуры при этом возрастают потери напора и могут ухудшаться условия формирования потока при прохождении через регулирующий затвор, что приводит к ухудшению условий регулирования. В целом при неправильном выборе заужения проходной части арматуры энергопотери могут достигать 15 %.


Гидравлические характеристики

Гидравлической характеристикой запорной и обратной арматуры является коэффициент сопротивления, который является безразмерной величиной, равной потере давления, деленной на скоростное давление. Коэффициент сопротивления рассчитывается по формуле



Где

∆Р – потери давления на арматуре, МПа;

Ρ – плотность рабочей среды, кг/м3;

ʋср – средняя скорость среды, отнесенная к площади сечения на входе арматуры, м/с.

Коэффициент сопротивления определяется экспериментально при полностью открытой арматуре.


В табл. 1.8 приведены коэффициенты сопротивления запорной и обратной арматуры.


Табл. 1.8. Коэффициенты сопротивления арматуры



Гидравлической характеристикой регулирующей арматуры является пропускная способность Kv, м3/ч. Величина Kv численно равна расходу жидкости в м3/ч с плотностью 1000 кг/ м3, протекающей через арматуру при перепаде давления на ней 0,1 МПа и соответствующем значении хода, и рассчитывается по формуле:


где

Q – объемный расход среды м3/ч;

∆P – перепад давления на клапане, кг/см2;

ρ – плотность среды, г/с м3.


В зарубежной практике пропускная способность арматуры рассчитывается по формуле


где

Q – объемный расход среды, галлон/мин;

∆P- перепад давления на клапане, фунт/дюйм2;

Gf – удельный вес среды, отнесенный к удельному весу воды, равному единице при температуре 60оF (33,3оC).


Обе формулы относятся к бескавитационному режиму протекания рабочей среды в области квадратичного сопротивления.


Коэффициент сопротивления  связан с пропускной способностью Kv и Cv зависимостями:


где

FN – площадь условного прохода, см2;

DN – диаметр условного прохода, см.


Числовая корреляция величин пропускной способности приведена в табл. 1.9.


Табл. 1.9. Числовая корреляция пропускной способности


Гидравлической характеристикой предохранительной арматуры является эффективная площадь, равная произведению коэффициента расхода на площадь, к которой она отнесена (по ГОСТ 12.2.085 коэффициент расхода относится к площади седла). По величине коэффициента расхода и значению площади седла по формуле, приведенной в ГОСТ 12.2.085, в зависимости от параметров эксплуатации рассчитывается расход (в ГОСТ называется пропускная способность), который будет проходить через клапан при его срабатывании. Рассчитанный расход должен быть не менее аварийного.


Присоединительные патрубки арматуры

Выбор присоединительных патрубков для соединения арматуры к трубопроводам зависит от давления и температуры рабочей среды, частоты демонтажа трубопроводов или снятия арматуры с них. Типы присоединительных патрубков арматуры приведены ниже.


1) Резьбовые. Резьбовые соединения требуют минимального количества присоединительных элементов, обеспечивают малые металлоёмкость и массу, а также простоту конструкций. Муфтовые соединения, когда трубная резьба выполнена в корпусах арматуры, широко применяются в бронзовых, латунных и чугунных клапанах. Область их применения ограничена рядом недостатков, к которым относятся трудность демонтажа, когда требуется свинчивать трубы, штуцеры или саму арматуру, обычно ограниченные размеры трубы 150 мм и меньшие, широко используются для бронзовых клапанов и, в меньшей степени, в чугунных и стальных клапанах.


2) Фланцевые. Фланцевые соединения арматуры с трубопроводами получили очень широкое применение благодаря их преимуществам: возможности многократного монтажа и демонтажа, хорошей герметизации стыков и возможности их подтяжки, высокой прочности и применимости для широкого диапазона давлений и размеров от 15 мм и более. К недостаткам фланцевых соединений следует отнести возможность ослабления затяжки и потери герметичности в условиях переменных температур и вибраций.


3) Сварные в раструб. Соединение выполнено таким образом, что патрубки клапана вставляются в раструбы трубопровода, и сварочные швы образуются на внешней стороне трубы, чтобы брызги и сварочный грат не могли попасть внутрь трубопровода. Указанное соединение используется только для стальных клапанов, и, как правило, они ограничены размерами до 50 мм для повышенных давлений и температур в трубопроводах, не требующих частого демонтажа.


4) Сварные встык. В этом случае патрубки арматуры и торцы трубопроводов разделывают под сварку. Иногда в соединение устанавливают подкладное кольцо для исключения перекосов и попадания в трубопровод брызг металла и частиц флюса.


Арматура с патрубками под приварку получила широкое применение, поскольку её использование гарантирует полную и надёжную герметичность соединения, что особенно важно для трубопроводов, транспортирующих взрывоопасные, токсичные и радиоактивные вещества или энергонасыщенные среды при высоком давлении и температура. Сварные соединения не требуют ухода и подтяжки, что особенно важно для магистральных трубопроводов и систем АЭС. Сварные соединения экономят металл и снижают массу арматуры и трубопроводов.


5) Обжатые. Этот тип присоединения получается при обжатии конца трубы о сферическую или коническую поверхность патрубка арматуры. Обжим производится накидной гайкой, имеющей внутреннюю поверхность контакта, совпадающую по геометрии с выступом на патрубке арматуры. На патрубке арматуры нарезается резьба, на которую навинчивается гайка. Как правило, соединение обжатием осуществляется для стальных или медных труб, когда по условиям эксплуатации требуется частая разборка соединения.


6) Паяные. Патрубки арматуры выполняются с проточкой, в которую вставляется обработанный конец трубопровода, покрытый припоем. Пайка производится между патрубком арматуры с внешней стороны трубы. Пайка используется при соединении с медными трубопроводами и обычно используется до проходов менее 65 мм. Соединение применяется до температуры, меньшей точки плавления припоя.


7) Соединения с уплотнением. Для получения гладкого втулочного соединения между патрубками арматуры и трубопроводом устанавливают кольцевое уплотнение из пряжи с пробковым наполнителем, пропитанным тетраэтилсвинцом или резиновые кольца. Торцы выполняются в виде фланцев или переходных муфт, присоединяемых болтами к фланцам арматуры, но могут быть и частью арматуры. Такие соединения используются в водоснабжении на чугунной арматуре с диаметром 50 мм и более.


8) Втулочные соединения. Выполняются в виде патрубков на арматуре или трубопроводе. На чугунных трубах со свинцовыми уплотнениями устанавливается рельефные стяжные хомуты. В соединениях с сальниковыми уплотнениями применяются резьбовые или болтовые стяжки. Используются также асбестовые уплотнения. Втулки подвергаются дополнительной обработке для получения гладкой поверхности, аналогичной трубе. Эти соединения также применяются в водоснабжении на арматуре с диаметром 50 мм и более.


9) Цапковые соединения. Термин используется с конца XIX века. На патрубке арматуры выполняется наружная резьба и гладкое внутреннее отверстие, в которое вводится конец трубопровода с буртом, прижимаемым накидной гайкой к торцу патрубка арматуры. Более современное название такого соединения – штуцерное. Применяется для присоединения арматуры небольших размеров.


10) Дюритные соединения. Выполняются в виде патрубков на арматуре или трубах с выступами под резиновые или пластмассовые шланги, которые надвигаются на патрубки и фиксируются, как правило, хомутами.

Курс Трубопроводная арматура. Модуль Краткий курс для менеджеров

Подняться наверх