Читать книгу Physics I For Dummies - Steven Holzner - Страница 17

Measuring speed, direction, velocity, and acceleration

Оглавление

Speeds are big with physicists — how fast is an object going? Thirty-five miles per hour not enough? How about 3,500? No problem when you’re dealing with physics. Besides speed, the direction an object is going is important if you want to describe its motion. If the home team is carrying a football down the field, you want to make sure that they’re going in the right direction.

When you put speed and direction together, you get a vector — the velocity vector. Vectors are a very useful kind of quantity. Anything that has both size and direction is best described with a vector. Vectors are often represented as arrows, where the length of the arrow tells you the magnitude (size), and the direction of the arrow tells you the direction. For a velocity vector, the length corresponds to the speed of the object, and the arrow points in the direction the object is moving. (To find out how to use vectors, head to Chapter 4.)

Everything has a velocity, so velocity is great for describing the world around you. Even if an object is at rest with respect to the ground, it’s still on the Earth, which itself has a velocity. (And if everything has a velocity, it’s no wonder physicists keep getting grant money — somebody has to measure all that motion.)

If you’ve ever ridden in a car, you know that velocity isn’t the end of the story. Cars don’t start off at 60 miles per hour; they have to accelerate until they get to that speed. Like velocity, acceleration has not only a magnitude but also a direction, so acceleration is a vector in physics as well. We cover speed, velocity, and acceleration in Chapter 4.

Physics I For Dummies

Подняться наверх