Читать книгу Physics I For Dummies - Steven Holzner - Страница 19
Springs and pendulums: Simple harmonic motion
ОглавлениеHave you ever watched something bouncing up and down on a spring? That kind of motion puzzled physicists for a long time, but then they got down to work. They discovered that when you stretch a spring, the force isn’t constant. The spring pulls back, and the more you pull the spring, the stronger it pulls back.
So how does the force compare to the distance you pull a spring? The force is directly proportional to the amount you stretch the spring: Double the amount you stretch the spring, and you double the amount of force with which the spring pulls back.
Physicists were overjoyed — this was the kind of math they understood. Force proportional to distance? Great — you can put that relationship into an equation, and you can use that equation to describe the motion of the object tied to the spring. Physicists got results telling them just how objects tied to springs would move — another triumph of physics.
This particular triumph is called simple harmonic motion. It’s simple because force is directly proportional to distance, and so the result is simple. It’s harmonic because it repeats over and over again as the object on the spring bounces up and down. Physicists were able to derive simple equations that could tell you exactly where the object would be at any given time.
But that’s not all. Simple harmonic motion applies to many objects in the real world, not just things on springs. For example, pendulums also move in simple harmonic motion. Say you have a stone that’s swinging back and forth on a string. As long as the arc it swings through isn’t too high, the stone on a string is a pendulum; therefore, it follows simple harmonic motion. If you know how long the string is and how big of an angle the swing covers, you can predict where the stone will be at any time. We discuss simple harmonic motion in Chapter 13.