Читать книгу Building Information Modeling For Dummies - Swaddle Paul - Страница 13

Part I
Getting Started with Building Information Modeling
Chapter 2
Explaining the Building Part of BIM: It’s Not Just Buildings
Seeing How BIM Can Help You

Оглавление

Whatever type of project you’re working on, you can apply the methods and processes of BIM to generate new efficiencies. Don’t forget that you’ll be building a digital representation of every aspect of the project. Some of the data is drawn, much of it in the form of information embedding.

Chapter 3 looks at information modeling and Chapter 4 at geometric, 3D-CAD modeling, and you may be thinking already that BIM sounds complicated, but you’re familiar with a lot of the concepts already. This chapter demonstrates how making BIM processes second nature on your projects can benefit your work flow and the wider industry. The following sections look at some of the key incentives for using BIM processes and help you to make a decision about whether BIM is suitable for your project.

Don’t worry about the various standards and protocols just yet. You may need time to understand all the detail and to digest some of the key documents and standards, especially the ones for your location, but everything will make sense eventually.

What does BIM do for building?

BIM can have numerous varied impacts on the work flow of a project. Here’s a list of just a few of them:

Making design easier

The design phases of a project are one of the areas where the greatest reductions in wasted effort and rework can be made with BIM. From initial concept sketches based on client briefings to technical decision-making and product selection, design can be made easier.

Design efficiency increases through the use of pre-authored objects with embedded properties and relationships, including master template information for costs, carbon information, vendor manufacturing data, and performance specification values. Chapter 10 provides more detail on the development of BIM objects, and Chapter 17 takes a look at how the design team fits into a BIM project lifecycle.

Making coordination simpler

The digital building provides a single source of data, which simplifies managing all of the information, figures, and dimensions on a project. BIM makes it simple to coordinate drawn and nongraphical content. Chapter 10 describes this concept, including terms like federated model, which means that you can understand the impact of your design and construction decisions on everyone else involved in the project.

Ensuring construction is safer

One of the major drivers of BIM, in all applications but especially infrastructure adoption, is improving safety. This means site safety and awareness of potential issues, but also refers to making decisions as early as possible with health and safety in mind and to designing out risk and modeling safe construction and maintenance scenarios. Chapter 16 shows you how BIM collaboration can make a really positive difference in project health and safety.

Analyzing energy use

Busy buildings and modern construction infrastructure cost a lot to run, especially with rising gas and electricity prices. You can achieve one of the biggest cost savings for a built asset not by shaving off dollars from design fees or construction costs, but during use of the asset and its operational lifecycle. The largest cost is energy usage, so being able to model the carbon, thermal, and environmental strategy of a built asset and experiment with various options is hugely beneficial. Refer to Chapter 15 for more information.

Managing and maintaining the built asset

Another way to think of building the information model is that you need to embed all the information in the digital representation of the physical asset so that it can be managed and maintained in the long term. Focus on outcomes and what information you need later in the project’s life. No longer will a building come with 40 boxes of paper drawings and spares; it should have a digital model embedded with data and clear procurement information. In Chapter 17, you can find out about making BIM work for facility management (FM).

Will BIM work for your projects?

You still may not be sure whether BIM is right for your infrastructure project. Perhaps your project isn’t a traditional built asset, or it’s something on a gigantic macro-scale, or else it’s going to involve only a few teams working on just the early stage of concept design.

Implementing BIM work flows makes sense for all stages of a project and for all sectors and disciplines, even if you’re not working on them all or with everyone else involved in a project. Even if the project lead isn’t making a coordinated effort to use BIM processes and collate data, supply your information as if that was the case. You’ll be doing everyone a favor and probably encouraging all participants to up their game.

You need to ask yourself if BIM is going to work for your projects and if the potential efficiencies or savings are worth the investment and related change that will be required. Figure out how you would approach the project using traditional methods and compare this to using only digital data and coordinated BIM tools and platforms. The answer may come down to the size of the project, but even the smallest constructions can be made more efficient.

For example, if you’re developing a house extension, you may not implement full-scale BIM, but you can still improve your information exchanges with other team members. Don’t forget that in some projects BIM usage may be an actual requirement for involvement in the team.

Here are some examples of building and civil projects where BIM is still hardly off the ground:

Projects at a scale thousands of miles in area: You need to break these down into a significant number of smaller lengths for most software platforms to cope, which results in complex coordination. Managing the impact of change in one area on its surroundings can be very tricky.

Projects that are fundamentally two-dimensional: Some examples include track layout and design on national rail networks. Many industrial manufacturers, fabricators, and suppliers have a long way to go before providing 3D object-based information.

Projects that involve the management of sites still in daily use: Examples include rail, road, and airport maintenance improvements with traffic management requirements. The urgency and complexity of these projects can make front-end time savings the priority, not long-term lifecycle benefits.

Software platforms for BIM generally need to understand the concept of objects. Object-oriented technologies allow each piece of data to link with many other objects, in webs of connections known as relational databases.

Building Information Modeling For Dummies

Подняться наверх