Читать книгу Le Téléphone, le Microphone et le Phonographe - Th. Du Moncel - Страница 9

EXAMEN DES PRINCIPES FONDAMENTAUX SUR LESQUELS REPOSE LE TÉLÉPHONE DE BELL.

Оглавление

Table des matières

Bien que l'historique qui précède soit suffisant pour faire comprendre aux personnes initiées dans la science électrique le principe du téléphone de Bell, il pourrait bien ne pas en être de même pour la plupart des personnes auxquelles notre livre s'adresse, et nous croyons en conséquence devoir entrer dans quelques détails physiques sur l'origine des courants électriques qui sont en jeu dans les transmissions téléphoniques. Ces détails nous paraissent d'autant plus nécessaires qu'il est beaucoup de personnes qui croient encore que les téléphones de Bell ne sont pas électriques, parce qu'ils ne mettent pas une pile à contribution, et le plus souvent elles les confondent avec les téléphones à ficelle, s'étonnant de la différence de prix qui existe entre les appareils que l'on vend dans les rues et ceux que l'on vend chez les constructeurs.

Sans définir ici ce que c'est qu'un courant électrique, ce qui serait par trop élémentaire, nous pourrons dire que les courants électriques peuvent provenir de beaucoup d'effets divers, et qu'en dehors de ceux qui résultent des piles, il en est d'aussi énergiques qui peuvent provenir d'une action exercée par des aimants sur un circuit conducteur convenablement combiné. Ces courants sont alors appelés courants d'induction, et ce sont eux qui sont en jeu dans les téléphones de Bell. Pour qu'on puisse comprendre comment ils se développent dans ces conditions, il sera nécessaire que nous examinions d'abord ce qui arrive quand, devant un circuit fermé, on avance ou l'on retire le pôle d'un aimant, et pour cela nous supposerons qu'un fil de cuivre sur lequel est interposé un galvanomètre est enroulé en cercle, et qu'on dirige vers le centre de ce cercle l'un des pôles d'un aimant permanent. Or voici ce que l'on observera:

1o Au moment où l'on approchera l'aimant, un courant électrique prendra naissance et fera dévier le galvanomètre d'un certain côté. Cette déviation sera d'autant plus grande que le mouvement accompli sera plus étendu, et la tension de ce courant sera d'autant plus grande que le mouvement sera plus brusquement effectué. Ce courant toutefois ne sera jamais qu'instantané.

2o Au moment où l'on éloignera l'aimant, un nouveau courant du même genre prendra naissance, mais il se manifestera en sens inverse du premier. Il sera ce que l'on appelle un courant direct, parce qu'il est de même sens que le courant magnétique de l'aimant qui lui donne naissance, tandis que l'autre courant sera dit inverse.

3o Si au lieu d'avancer ou de retirer l'aimant par l'effet d'un seul mouvement, on le fait avancer par saccades, on reconnaît qu'il se détermine une succession de courants dans le même sens dont la présence peut être constatée sur le galvanomètre quand les mouvements sont suffisamment espacés, mais qui se confondent en se superposant quand ces espacements sont très-faibles, et comme des effets inverses résultent des mouvements de l'aimant effectués dans un sens contraire, il arrive que l'aiguille du galvanomètre suit les mouvements de l'aimant et les stéréotype en quelque sorte.

4o Naturellement si, au lieu de réagir sur un simple circuit fermé, l'aimant exerce son action sur un nombre considérable de circonvolutions de ce circuit, c'est-à-dire sur une bobine de fil enroulé, les effets seront considérablement augmentés, et ils le seront encore plus si, à l'intérieur de cette bobine, se trouve un noyau magnétique, car l'action inductive s'effectuera alors de plus près et sur toutes les parties de la bobine. Comme le noyau magnétique en s'aimantant ou en se désaimantant plus ou moins sous l'influence du rapprochement ou de l'éloignement de l'aimant inducteur subit le contre-coup de tous les accidents qui peuvent se manifester pendant le mouvement de cet aimant, les courants induits qui en résultent les accusent parfaitement.

5o Au lieu d'admettre que l'aimant inducteur est mobile, on peut le supposer fixe au centre de la bobine, et l'on peut dès lors déterminer les courants induits dont nous avons parlé en modifiant son énergie. Il suffit pour cela de réagir sur ses pôles au moyen d'une armature de fer. Quand cette armature est approchée de l'un de ces pôles ou de tous les deux en même temps, il acquiert de l'énergie et produit un courant inverse, c'est-à-dire un courant dans le sens qui aurait correspondu à un rapprochement de l'aimant du circuit fermé. Quand elle s'éloigne, l'effet inverse se produit; mais dans les deux cas, les courants induits sont en rapport avec l'étendue et le sens des mouvements accomplis par l'armature, et par conséquent, ils peuvent reproduire par leurs effets les mouvements de cette armature. Or si cette armature est une lame de fer et que cette lame vibre sous l'influence d'un son quelconque devant un système électro-magnétique disposé comme il vient d'être dit plus haut, les allées et venues de cette lame se traduiront par des courants induits, plus ou moins forts, plus ou moins accidentés, suivant l'amplitude et la complexité des vibrations, mais qui seront ondulatoires, puisqu'ils résulteront toujours de mouvements successifs et continus et seront, par conséquent, dans les conditions voulues pour transmettre la parole ainsi qu'on l'a vu précédemment.

Quant à l'action déterminée sur le récepteur, c'est-à-dire sur l'appareil qui reproduit la parole, elle est assez complexe, et nous aurons occasion de la discuter plus tard; mais, au premier abord, on peut la concevoir si l'on considère que les effets produits par ces courants induits d'intensité variable qui traversent la bobine du système électro-magnétique, doivent déterminer par les magnétisations et démagnétisations qui en résultent, des vibrations plus ou moins amplifiées, plus ou moins accidentées de la lame armature, lesquelles représentent exactement celles de la lame devant laquelle on a parlé, mais qui n'en peuvent être qu'une réduction. Toutefois les effets sont par le fait plus compliqués, quoique se produisant dans des conditions analogues, et ce sont eux que nous discuterons plus tard quand nous en serons aux expériences faites avec le téléphone. Nous ferons observer néanmoins, dès maintenant, que pour ces reproductions de la parole, il n'est pas nécessaire que le noyau magnétique soit en fer doux, car les effets vibratoires peuvent résulter aussi bien d'aimantations différentielles que d'aimantations directes.[Table des Matières]

Le Téléphone, le Microphone et le Phonographe

Подняться наверх