Читать книгу Бойся физматов, дары приносящих! РАН – тормоз научного прогресса, или Кукушата в гнезде науки - В. И. Лакеев - Страница 6

Часть 1
Опыты Майкельсона—Морли

Оглавление

Согласно современным научным представлениям, опыты Майкельсона и Морли на интерферометре, а также других экспериментаторов (использовавших устройства с аналогичной принципиальной схемой), сделавших попытку посредством локального оптического явления определить абсолютное движение Земли в пространстве, отождествляемое с эфиром, доказали отсутствие эфира и что скорости света инвариантны независимо от направления движения системы их отсчёта.

У Б. Джеффа в книге «Майкельсон и скорость света» версия, послужившая отправной точкой для этого опыта, изложена несколько иначе и короче, чем у Майкельсона, но суть всё та же. «Два человека… гребут с одинаковой скоростью 1,5 м/с. Вода в реке, по которой они плывут, движется со скоростью 1,2 м/с, а ширина реки 27 м. Первый гребец проходит на лодке 27 м вниз по течению и затем обратно. Вниз по течению он движется со скоростью 2,7 м/с, на обратном пути его скорость равна всего 0,3 м/с. На всю поездку, таким образом, у него уходит 27/2,7 +27/0,3 = 100 с.

Скорость передвижения второго гребца, идущего поперёк течения, может быть представлена катетом прямоугольного треугольника; другим катетом, которым является скорость движения воды, равная 1,2 м/с, а гипотенузой – скорость, с которой гребец передвигается в неподвижной воде, – 1,5 м/с. Отсюда:

1,5² = 1,2² + v², v = 0,9 м/с; t = 27/0,9 = 30 с.

Второй гребец для прохождения пути туда и обратно затратит 60 секунд вместо 100. Пользуясь этой простой аналогией, Майкельсон рассудил, что эфир будет меньше замедлять свет, если свет будет распространяться под прямым углом к направлению движения Земли, и больше, когда он движется в пространстве в том же направлении, что и Земля» [2].

Именно эта разница во времени прохождения обоими гребцами своих дистанций, по мнению исследователей, должна была также проявиться и в результатах опытов. Но вопреки их ожиданиям, интерференционная картина, независимо от ориентации прибора, упрямо указывала на одновременность попадания обоих лучей в интерферометр.

Полученный результат оказался необъяснимым с позиций классической теоремы о геометрическом сложении-вычитании скоростей и, естественно, подверг большому сомнению применимость этой теоремы в области микропроцессов. И тогда Г. Лоренц, будучи ознакомленным с уравнениями К. Максвелла, прекрасно знавший, что они не имеют никакого физического смысла и являются всего лишь чисто математической абстракцией, тем не менее применил их к движущимся телам и получил свои «знаменитые» преобразования, согласно которым размеры тел якобы сжимаются в направлении своего движения.

Таким образом, с введением в методику расчётов релятивистского эффекта (сжатие размеров) получалось так, как будто бы движение продольного луча проходило по укороченному пути, что, по мнению физматов, и объясняло причину одновременного попадания продольного и поперечного лучей в интерферометр.


Анализ

Однако как можно было утверждать, что результат оказался необъяснимым с позиций классической теоремы геометрического сложения и вычитания скоростей, на том лишь основании, что ожидаемые расчёты не совпали с конечным результатом? Да и как они могли совпасть, если расчёты были проведены бездарно – без учёта в них законов сохранения.

Но тем не менее проявившие вопиющую безграмотность при решении результатов опытов теоретики, заявив о невозможности применения классической теоремы геометрического сложения и вычитания скоростей в процессах микромира, были вынуждены заткнуть образовавшуюся брешь в расчётах мертворождённым релятивистским эффектом, чтобы хоть как-то свести концы с концами.

А ведь что такое законы сохранения?


«…Открытые в механике законы сохранения играют в природе огромную роль, далеко выходящую за рамки самой механики. Даже в тех условиях, когда законы механики Ньютона применять нельзя, законы сохранения импульса, энергии и момента импульса не теряют значения. Они применимы как к телам обычных размеров, так и к космическим телам и элементарным частицам» [3].


Ну почему же в механике Ньютона они не применимы? Напротив, не только применимы, но даже и крайне необходимы! Что я сейчас и докажу.

Кстати, не будет лишним напомнить тут и о том, что, в свою очередь, преобразования Г. Лоренца (релятивистский эффект) использовал и А. Эйнштейн в своей специальной теории относительности (СТО).


Решение

Ну а теперь, чтобы не быть голословным в своём утверждении того, что интерпретация результатов экспериментов как следствия проявления в них релятивистских эффектов является грубейшей ошибкой, приведу совсем другой расчёт, но уже с учётом фундаментальных законов Природы – законов сохранения импульса и механической энергии.

Согласно этим законам, при встречном и центральном соударении тел их начальные скорости меняются в соответствии с разницей их масс (в данном случае, исходя из разницы соотношения между массами Земли и корпускул, массой Земли в расчётах можно пренебречь).

При этом следует заметить и то, что при рикошете микрочастицы от движущегося ей навстречу препятствия, расположенного под углом в 45° относительно её движения, скорость микрочастицы при соударении с ним увеличится на половину его скорости. И наоборот, скорость догоняющей препятствие микрочастицы уменьшится в половину его скорости, если они движутся в попутном направлении.

Следовательно, после столкновения корпускул с односторонне посеребрённой стеклянной пластиной (далее – призма) скорость корпускул, проникших сквозь неё и летящих во встречном направлении движению Земли с прибором, останется прежней, в то время как скорость корпускул при скользящем, касательном отражении от призмы в перпендикулярном направлении движению Земли возрастёт на величину, равную половине скорости Земли.

Не стану излишне пользоваться сухим языком математики, так как он не даёт наглядного представления происходящему. А потому, сведя расчёты к минимуму, проиллюстрирую процесс наглядными образами, доступными пониманию каждого.

Для простоты расчётов допустим, что расстояние хода корпускул вдоль каждого из плеч прибора равно 3 метрам. Скорость Земли с прибором равна 1 м/с, а скорость корпускул 2 м/с.

Отсчёт ведётся от пунктирной линии, обозначенной 0. Треугольник – ▼ (на графиках изображён сопряжённым с прибором, снизу) – служит в качестве ориентира при определении пройденного прибором расстояния.

А шкалой отсчёта является каждая клетка на графике. Одна – 0,5 метра и, соответственно, 0,5 секунды, а две клетки, соответственно, 1 метр или 1 секунда.

На рисунке 1 изображены: источник света – S; условная схема прибора, содержащего на концах обоих своих плеч зеркала З1 и З2; призма – Пр., а также пучок корпускул (в момент их попаданий на призму), обозначенный символом, который при соударении с призмой распадается на две одиночные корпускулы, обозначенные на рисунках (2, 3, 4) в меньших масштабах под номерами 1 и 2.


Рис. 1. Нулевая точка отсчёта движения

прибора в момент касания пучка света призмы


Теперь проследим в динамике развитие процесса с интервалом в одну секунду.

Итак, через секунду после начала отсчёта (см. рис. 2) прибор сместится на метр, а корпускула №1, летящая по направлению движения Земли со скоростью 2 м/с, достигнет зеркала З1, в то время как корпускула №2, движущаяся перпендикулярно ей и быстрее (в результате соударения с призмой), уже со скоростью 2,5 м/с преодолеет 2,5 метра.


Рис. 2. Пространственное положение

прибора и корпускул через 1 секунду


По прошествии ещё одной секунды (см. рис. 3) прибор удалился от исходной точки 0 уже на два метра. А корпускула №1 из точки взаимодействия с зеркалом З1, обозначенной символом ★, приобретя дополнительно его скорость и двигаясь теперь уже со скоростью 3 м/с в обратном направлении, также как и корпускула №2, имеющая скорость 2,5 м/с, оказались одновременно в метре от призмы.


Рис. 3. Пространственное положение

прибора и корпускул через 2 секунды


Ну а теперь, подводя промежуточный итог, прибегнем к расчётам, чтобы установить, за какое время каждая из корпускул, преодолев свой отрезок пути, достигнет призмы.

Для корпускулы №1 простейший расчёт показывает, что так как движущиеся в одном направлении корпускула №1 и Земля с прибором имеют скорости соответственно 3 и 1 м/с, то из скорости корпускулы вычтем скорость Земли с прибором, 3 – 1 = 2 м/с – это, естественно, в системе координат – прибор и корпускула. Отсюда находим время преодоления ей метрового отрезка пути: 1/2 = 0,5 сек.

Что же касается корпускулы №2, то, согласно графику, на преодоление того же метрового отрезка ей понадобится: 1/2,5 = 0,4 сек.

Таким образом, если рассматривать ход обеих частиц в одной системе координат, связанной с прибором, то корпускула №2 могла бы опередить частицу №1 на 0,1 секунды.

Бойся физматов, дары приносящих! РАН – тормоз научного прогресса, или Кукушата в гнезде науки

Подняться наверх