Читать книгу Будем правильно дышать! - В. И. Романов - Страница 4

Глава I. Физиологические проявления дыхания
1.2. Роль газообмена в здоровье организма

Оглавление

Практически все живые существа на нашей планете, за исключением анаэробных бактерий, живут и развиваются в воздушной среде, представляющей собой смесь газов – в основном азота, кислорода, паров воды, оксидов и диоксидов углерода, азота и в незначительных количествах других газов.

Основными газами, обеспечивающими жизненно важные процессы окисления, являются кислород и двуокись углерода – СО2. Этими газами живые организмы буквально «напичканы», но их содержание не всегда является оптимальным. Между тем, – как недостаток кислорода, так и недостаток углекислого газа в крови организмов может повлечь тяжёлые последствия. Содержание углекислого газа в крови регулирует возбудимость нервной системы, влияет на активность ферментных, гормональных и пищеварительных процессов. Углекислый газ крови участвует в синтезе белка, регенерации повреждённых тканей и др. Кислород необходим для извлечения энергии из пищи, причём умеренное кислородное голодание вызывает заметный оздоровительный эффект и является действенным методом торможения процессов старения.

Потребность организмов в углекислом газе возникла «исторически» ещё много миллионов лет назад, когда углекислый газ в атмосфере составлял основную часть её объёма. Зарождавшийся на планете фотосинтез заключался в поглощении углекислого газа клетками растений, выбросе в атмосферу кислорода и накоплении углерода. Постепенное обогащение атмосферы кислородом послужило одной из основ для возникновения животной жизни. Но законы обмена веществ в клетке, нуждающейся для жизни не только в кислороде, но и в углекислом газе, сохранились.

Между тем следует помнить, что углекислый газ является вазодилятатором (вазодилятация – это расширение сосудов). Повышенное содержание СО2 расширяет кровеносные сосуды, что позволяет большему количеству растворённых газов проходить через кровеносную систему, достигая мозга. Таким образом, чрезмерное повышение уровня СО2 в крови увеличивает риск кислородного отравления, азотного наркоза, декомпрессионной болезни и гипотермии.

Сейчас в атмосферном воздухе присутствуют только сотые доли процента углекислого газа, а в крови его содержится несколько процентов. С таким газовым дисбалансом организм не всегда способен успешно справиться и ему надо помогать. Оптимальным балансом между кислородом и углекислым газом в артериальной крови можно управлять подбором дыхательных упражнений (об этом в разделе 4.3 книги). Это сделать непросто, так как механизмы насыщения крови О2 и СО2 противоречивы, и нужно искать компромиссное решение. При выполнении дыхательных упражнений главной заботой является накопление в крови именно углекислого газа.

Отмечается [10], что в реальном газообмене участвует только часть объёма вдыхаемого воздуха, достигающая альвеол лёгких. Она составляет около 70 % от минутного объёма и называется альвеолярной вентиляцией, или альвеолярным объёмом, и измеряется в литрах в минуту. В свою очередь газообмен кислорода и углекислого газа в артериальной крови определяется парциальными давлениями (напряжениями) в ней этих газов.

На рисунке 1 показаны зависимости этих давлений от альвеолярной вентиляции лёгких. В нормальных условиях давление кислорода в артериальной крови составляет около 95 мм рт. ст., а углекислого газа – 40 мм рт. ст. Отмечается [10], что парциальное давление углекислого газа мало меняется с возрастом, а парциальное давление кислорода снижается примерно на 25 %. Этот параметр можно рассматривать как один из объективных показателей старения организма. Увеличение парциального давления кислорода сопровождается уменьшением парциального давления углекислого газа. Избыток кислорода как бы вымывает из крови углекислый газ; уровень же углекислого газа, превышающий норму, приводит к кислородному голоданию. Такая сложная взаимная зависимость концентраций углекислого газа и кислорода для нормальной работы живого организма диктует ему тактику поведения.


Рис. 1. Зависимость парциальных давлений кислорода РО2 и углекислого газа РСО2 от альвеолярной вентиляции в артериальной крови [10].


По современным представлениям, газообмен в лёгких происходит меньше чем за 1 секунду. Углекислый газ в растворённом виде выходит из плазмы через стенки лёгочного капилляра в мельчайшее пространство между капилляром и стенкой альвеолы. Затем он проходит сквозь стенки альвеолы в тонкую влажную плёнку, выстилающую каждую альвеолу. Как углекислый газ, так и кислород, растворяются в этом влажном слое на своем пути в кровь и из неё. Газы переносятся путем диффузии – движения из области высокого в область низкого давления. Кислород проходит в противоположном направлении относительно углекислого газа – из альвеолы в кровь – и соединяется с гемоглобином эритроцитов, образуя оксигемоглобин. Лёгочные капилляры настолько узки, что эритроциты движутся по ним "гуськом" один за другим.

Насыщенная кислородом кровь возвращается в левое предсердие через лёгочные вены, которые проходят вдоль бронхиол и бронхов. Вдыхаемый воздух содержит около 20 % кислорода, ~0,03 % углекислого газа, остальную часть составляет азот и следовые концентрации других газов. Выдыхаемый воздух содержит около 16 % кислорода, а количество углекислого газа возрастает примерно в 100 раз и составляет ~4 %. Выдыхаемый воздух насыщен водными парами; эта невидимая потеря воды из организма составляет примерно 1 л в сутки.

Для реализации газообмена кровь должна доставлять к альвеолам кислород и уносить углекислый газ. Поэтому газообмен зависит также от объёма крови, проходящей через альвеолы за единицу времени. Отношение альвеолярного объёма воздуха к этому объёму крови характеризует состояние воздушно-кровяного обмена, которое в норме равно 0,9÷1,0.

Статистическая «норма» для среднего человека составляет 12 дыханий в минуту. При этом лёгкие сильно вентилируются с избыточной потерей углекислого газа. Поверхностное и более медленное – хотя бы в полтора-два раза – дыхание приведёт, по мнению Ю.Гущо [10], к увеличению продолжительности жизни, так как позволит улучшить газообмен в крови и отодвинуть наступление болезней. Недостаток же углекислого газа, вызванный глубоким частым дыханием ртом, приводит к спазмам сосудов, сокращению стенок бронхов. Сужение сосудов уменьшает потребление кислорода почками, сердцем, мозгом, печенью и другими органами, повышает артериальное давление и уменьшает венозный кровоток. Застой крови в венах, в свою очередь, приводит к сосудистым нарушениям и, как следствие, ко многим болезням.

Азот и углекислый газ также играют важную роль в газообмене организма, являясь незаменимыми в синтезе белков. При правильном газообмене молекулы кислорода соединяются с гемоглобином, а дальше доносятся кровью до каждой клетки. При недостатке СО2 кислород не усваивается в полной мере, организм испытывает его дефицит. И для того чтобы молекула азота закрепилась в кишечнике для синтеза белков, также необходим углекислый газ, в противном случае синтез белков не осуществляется [11]. В результате углекислый газ, растворяясь в воде, увеличивает количество ионов водорода Н+ в растворе, то есть создаётся кислая среда. Именно в кислой среде ускоряются процессы связывания кислорода с гемоглобином, т. е. лучше усваивается вдыхаемый кислород. Научными исследованиями установлено, что дыхание йогов в наибольшей степени соответствует этому требованию.

Между тем дыхание обычных людей – глубокое и частое – приводит к избыточному выведению углекислого газа из организма. В результате происходит перевозбуждение центральной нервной системы, сдвиг кислотно-щелочного равновесия в сторону щелочной среды. Следствием этого нарушается обмен веществ и постоянство внутренней среды. Это выражается в снижении иммунитета, склонности к аллергиям, воспалительным заболеваниям, отложению солей, ожирению или похуданию. Кроме того, нарушается работа желез внутренней секреции, развиваются опухоли и т. д. При чрезмерной потере СО2 включаются защитные механизмы организма, пытающиеся остановить этот разрушительный для организма процесс. К ним относятся [11]:

• спазм сосудов бронхов;

• сужение кровеносных сосудов;

• увеличение секреции слизи в бронхах, носовых ходах, развитие аденоидов, полипов;

• отложение холестерина, что способствует развитию склероза тканей и, как следствие, преждевременного старения, развития инфарктов и инсультов.

При нормализации дыхания количество углекислого газа, водорода и азота в организме достигает должного уровня, и восстанавливается энергообмен, при котором естественным образом ликвидируются все перечисленные выше патофизиологические состояния. А если ещё больше уменьшить дыхание, как советуют йоги, то у человека развиваются предпосылки к сверхвыносливости, высокому потенциалу здоровья и долголетию.

Если научиться дышать с частотой 1÷3 дыхания в минуту, как это делают опытные йоги, то можно действительно есть низкобелковую пищу, используя для синтеза белка углекислый газ [10,3]. Процедуры нравственного и физического очищения, провозглашаемые йогой, голодание, диета, физические упражнения замедляют дыхание, улучшают общее состояние организма, состояние нервной и сосудистой систем и качество газообмена между атмосферным воздухом и кровью.

Одним из первых, кто обнаружил негативные эффекты на организм человека глубокого неконтролируемого дыхания был Бутейко К.П. До него в медицинской практике считалось, что при глубоком дыхании организм полнее насыщается кислородом, а значит обменные процессы в клетках протекают мобильнее и энергетический уровень в них возрастает. Оказалось, что это не так.

Бутейко К.П с помощью приборов описал, так называемый, вентиляционный эффект [12]. Лабораторные приборы зафиксировали, что содержание кислорода в крови при глубоком дыхании не увеличивается, а наоборот, человек испытывает …кислородное голодание. Сущность вентиляционного эффекта состоит в том, что после глубокого вдоха и выдоха из организма уходит значительное количество углекислого газа. Казалось бы это хорошо – ведь углекислый газ является отходом дыхания и в больших концентрациях ядовит! Это заблуждение опроверг в 1911 году наш соотечественник Альбицкий И.М. [13], обнаруживший, что в здоровом организме подлежит удалению лишь часть СО2, а другая часть необходима ему как одна из важнейших компонентов.

Более поздние исследования Бутейко К.П. и других учёных подтвердили это предположение [14]. Оказалось, что живая клетка функционирует в оптимальном режиме, если в ней присутствует 1÷2 % кислорода и 7÷8 % углекислого газа. При глубоком дыхании СО2 «выветривается», что приводит к нарушению деятельности нервной системы, усилению щелочной реакции, изменению активности ферментов. Сбой в работе ферментов вызывает нарушение обменных процессов всех видов и во всех клетках организма – он заболевает. Многочисленные опыты на животных с подключёнными дыхательными аппаратами при глубоком дыхании в течение нескольких десятков минут приводили их к гибели. Ещё одной важной ролью в организме СО2 является её необходимость для синтеза аминокислот.

К сожалению концентрация углекислого газа в атмосфере 0,03 %, что в сотни раз ниже естественных потребностей клеток организма, и поэтому приходится путём задержек дыхания компенсировать эту недостачу.

Имя доктора Бутейко К.П. – автора метода, позволяющего людям избавиться от многих хронических болезней без применения лекарств широко известно в нашей стране. Те, кому довелось близко познакомиться с его "Методом волевой ликвидации глубокого дыхания", знают, какая важная, можно сказать ключевая роль отводится в нём углекислому газу (CО2). К.П. Бутейко и его последователи за почти 40 лет практического применения метода, доказали, что от многих хронических болезней, в том числе от гипертонической болезни, человек может избавиться, увеличив содержание в организме углекислого газа.

Сегодня роль дефицита СО2 в развитии многих болезней изучена достаточно хорошо, и один из способов их лечения, созданный на основе этих знаний, воплощён в методе ВЛГД (волевой ликвидации глубокого дыхания) и дозированной физической нагрузки. В частности, при лечении бронхиальной астмы методом Бутейко, результатом применения комплекса будет то, что постепенное повышение процентного содержания СО2 в воздухе лёгких будет способствовать быстрому устранению гиперсекреции и отёка слизистой оболочки бронхов и снижению повышенного тонуса гладких мышц стенки бронхов.

Более того, по словам создателя метода ВЛГД и его многочисленных последователей, через некоторое время повышение СО2 до определённой величины приводит к стиханию аллергического воспалительного процесса в бронхах и практически полному устранению клинических проявлений астмы. Причём поддержание нормального уровня СО2 в среднем около полугода приводит к полному завершению аллергического воспалительного процесса в бронхах, разрушению рефлекторного механизма развития спазма бронхов, что делает невозможным развитие приступов удушья ни при каких условиях, даже при условии искусственного создания дефицита СО2 в лёгких. Для повторного формирования рефлекторного механизма спазма бронхов, по их мнению, потребуется в среднем 10÷15 лет, что является гарантированным сроком клинической ремиссии.

Следует иметь в виду, что альвеолярная гипокапния (снижение парциального давления СО2) является результатом не только лёгочной гипервентиляции, но в большей степени – следствием гиподинамии и снижения активности общего обмена веществ. Задержки дыхания позволяют не только устранить избыточность общей вентиляции лёгких, но и повысить активность метаболизма, что значительно ускоряет процесс устранения дефицита альвеолярного СО2.

Похожие выводы о целебном воздействии углекислого газа на живой организм сделаны и в других работах [15–22], среди которых можно отметить книгу Мишустина Ю.Н. [23], посвящённую, в основном, излечению заболеваний сердечно-сосудистой системы. Приведём некоторые положения этой книги ввиду важного обобщающего их характера.

«…Известно, что сужение микрососудов тела приводит к уменьшению кровотока в органах (нарушению регионарного кровообращения), то есть к нарушению нормального кровоснабжения их тканей – ишемии. А на уровне клеток ишемия ведёт к их кислородному голоданию (гипоксии тканей). Из-за нехватки кислорода клетки перестают выполнять свои функции в полном объёме. Острый же дефицит кислорода приводит к массовой гибели клеток – инфарктам органов, причём не только сердца (инфаркт миокарда) или головного мозга (ишемический инсульт), но и других органов. У здорового (как правило, относительно молодого) человека нормальный просвет микрососудов постоянно поддерживается за счёт поддержания организмом нормальной концентрации растворенного в крови углекислого газа. Это вещество постоянно вырабатывается в каждой клетке организма как конечный продукт (наряду с водой Н20) окисления углеводородов (в основном глюкозы). CО2 в конце концов выделяется из организма через лёгкие. Но на пути к лёким углекислый газ некоторое время находится в крови, играя при этом роль естественного регулятора просвета микрососудов, то есть сдерживая их сужение. Таким образом, можно считать установленным, что нормальная концентрация CО2 в артериальной крови – залог отсутствия стойкого повышенного артериального давления (АД), нередко сопровождающегося кардионарушениями.

Простой способ снятия приступов головной или сердечной боли заключается всего лишь в искусственном, волевом сдерживании дыхания в течение нескольких минут. Головная или сердечная боль снимается вследствие расширения микрососудов, поскольку их расширение приводит к снижению нагрузки на сердце и артериального давления.

Извне в организм ничего не вводится, значит, на стенки артериол аналогично папаверину подействовало вещество, производимое самим организмом. Это вещество – углекислый газ.

Стоило увеличить содержание в крови CО2 – артериолы расширились. А пока углекислого газа в крови было "мало", артериолы были сужены – имели хронический повышенный тонус.

Есть ещё один простой опыт, подтверждающий этот результат [11]. Делаем несколько очень глубоких вдохов и выдохов до тех пор, пока…"не закружится голова". Избыточное дыхание приводит к уменьшению концентрации в артериальной крови CО2. Вследствие этого происходит сужение артериол головного мозга, вызывающее ишемию мозга. Головокружение – результат нехватки кислорода».

Что касается газообмена, то он не ограничивается только кислородом и углекислым газом, а касается обмена и других газов между организмом и внешней средой. Из окружающей среды в организм непрерывно поступают, кроме кислорода, потребляемого всеми клетками, органами и тканями, – азот, небольшое количество СО2 и других атмосферных газов. Из организма выделяются образующийся в нём углекислый газ, парообразная вода, некоторое количество кислорода и газообразные продукты обмена веществ.

Кроме лёгких в газообмене организма участвуют внутренние органы (в основном – пищеварительный тракт) и кожные покровы (кожа). Поступающие внутрь газы имеют разные источника. Есть два источника газа, который скапливается в просвете пищеварительного тракта – это атмосферный воздух и кишечные газы. Рассмотрим их кратко [24].

Заглатывание воздуха с последующими переходом его в желудок

Атмосферный воздух попадает в пищеварительную систему организма путём его заглатывания. Глотание определяется как нейромышечная реакция с произвольным и непроизвольным компонентами. В среднем человек глотает около 600 раз в сутки (200 раз во время еды, 50 раз во время сна, 350 раз в остальное время), преимущественно бессознательно [24]. Небольшие порции воздуха (2–3 мл) попадают в желудок при каждом акте глотания. Физиологическая роль проглоченного воздуха заключается в стимуляции моторики желудка. Часть воздуха проходит через привратник в кишечник. При избыточном скоплении воздуха и повышении внутриполостного давления возникает отрыжка вследствие рефлекторного сокращения мышц желудка, диафрагмы и мускулатуры брюшного пресса при открытом входном отделе и спазме привратника. Воздух верхней части кишечника состоит из азота (78 объемных %) и кислорода (21 %), один процент приходится на благородные газы и углекислоту; растворимость воздуха в воде 29 см3/л.

Продукция газов бактериями кишечника.

Большинство поступающих в пищеварительный тракт с пищей углеводов перевариваются и всасываются в тонкой кишке при участии специфических ферментов. Содержащиеся же преимущественно в овощах, фруктах сахараолигосахариды вербаскоза, раффиноза и стахиоза не усваиваются и захватываются толстокишечной флорой. С участием бактериальных ферментов – амилаз и дисахаридаз – происходит расщепление (гидролиз) этих неперевариваемых углеводов до органических кислот и газов – водорода (Н2) и углекислоты (СО2), а у части лиц и до метана (СН4). Такие сложные полисахариды, как ксиланы, пектин, микрополисахариды, гликопротеин, также расщепляются преимущественно микрофлорой толстой кишки. Кроме того, часть микроорганизмов расщепляют протеазами и уреазами пищевой белок до аминов, фенолов, индолов, аммиака (NH3) и других продуктов. Есть мнение, что состав кишечной флоры устанавливается в течение первых 8 лет жизни под влиянием пищевых продуктов, употребляемых семьёй.

Рассмотрим теперь газовый состав содержимого нижней части кишечника. Его представляют:

Водород. Присутствие Н2 в кишечнике и, следовательно, в выделяемом воздухе человека – результат только жизнедеятельности бактерий, потребляющих углеводы. Он легко попадает через стенку кишечника в кровь и затем выдыхается лёгкими.

Метан образуется облигатными анаэробами – архебактериями, берущими энергию в результате преобразования Н2, СО2, формиата, ацетата и метанола в СН4; важным источником образования СН4 в кишечнике является индол. Метанобактерии обнаруживаются в фекалиях у 90 % людей, у 30–40 % СН4 обнаруживается в выдыхаемом воздухе. Отмечена положительная корреляция между концентрациями в кишечнике метана и водорода. Больше метана вырабатывается у лиц, страдающих запорами.

Углекислый газ образуется в результате микробной ферментации углеводов, в том числе входящих в состав растительных волокон.

Аммиак образуется вследствие микробной деградации мочевины и аминокислот. В результате гидролитических процессов в NH3 превращается до 30 % мочевины, образующейся в печени.

Сероводород образуется преимущественно при преобразовании серосодержащих аминокислот белков анаэробными сульфатредуцирующими бактериями.

Таким образом, основными компонентами газа в пищеварительном тракте человека являются: углекислый газ, водород, метан, азот и кислород, аммиак, сероводород. Азот и кислород имеют внешнее происхождение, а углекислый газ, водород и метан образуются в результате бактериальной ферментации. Эти газы не имеют запаха. Запах кишечного газа частично обусловлен сероводородом и аммиаком, но значительную роль играют так называемые следовые газы, содержащиеся в концентрациях ниже 1 части на миллион. Это серосодержащие вещества, такие как метанэтиол и диметилсульфид.

Отметим, что газообмен необходим для всех живых организмов, без него невозможен нормальный обмен веществ и энергии, а следовательно и сама жизнь. Кислород, поступающий в ткани, используется для окисления продуктов, образующихся в итоге длинной цепи химических превращений углеводов, жиров и белков. При этом образуются СО2, вода, азотистые соединения и освобождается энергия, используемая для поддержания температуры тела и выполнения работы. Количество образующегося в организме и в конечном итоге выделяющегося из него СО2 зависит не только от количества потребляемого О2, но и от того, что преимущественно окисляется: углеводы, жиры или белки. Другие газообразные выделяемые человеком продукты, в основном, токсичны. Они называются антропотоксинами [25,26].

Исследования показали [27,28], что воздушная среда помещений ухудшается пропорционально числу лиц и времени их пребывания в помещении. Анализ воздуха помещений позволил идентифицировать в них ряд токсических веществ, которые можно распределить пo классам опасности следующим образом:

высокоопасные вещества (2-й класс опасности)

диметиламин, сероводород, двуокись aзотa, окись этилена, бензол;

умеренно опасные вещества (3-й класс опасности)

уксусная кислотa, фенол, метилстирол, толуол, метанол, винилацетат;

малоопасные вещества (4-й класс опасности)

ацетон, метилэтилкетон, бутилацетат, бутан, метилацетат.

Пятая часть выявленных антропотоксинов относится к числу высокоопасных веществ. Концентрации остальных веществ, хотя и составляли десятые и меньшие доли oт ПДК, однако, вместе взятые свидетельствовали о неблагополучии воздушной среды. Даже двух-четырехчасовое пребывание в этих условиях отрицательно сказывалось нa показателях умственной работоспособности исследуемых.

Кстати, человек дышит не только лёгкими, но и кожей, хотя кожное дыхание незначительно (1÷2 % общего объёма дыхания) и выделяет при этом множество газообразных токсикантов. Их концентрации незначительны, но при большом скоплении людей и продолжительном времени экспозиции дозы ядовитых выделений могут вызвать признаки отравления: головную боль, тошноту и вялость, снижение работоспособности и иммунитета. Хочется скорее вырваться на свежий воздух.

У некоторых млекопитающих, например, лошади, кожное дыхание имеет большее значение и его доля может возрастать до 8 % [111]. Хотя перейти полностью на кожный тип дыхания, как это могут делать земноводные, звери, конечно, неспособны. У насекомых тело покрыто хитиновым панцирем, и кожное дыхание для них невозможно. Дышат они совершенно особым способом – трахейным. Трахеи насекомых это сеть тончайших разветвлённых трубочек, пронизывающих всё их тело. Почти в каждом сегменте тела у насекомых есть пара дыхалец – отверстий, ведущих в систему трахей. Крупные насекомые, двигая мускулами брюшка активно вентилируют свои трахеи. Всё-таки трахейный тип дыхания – не самый совершенный, и чем крупнее насекомое, тем труднее воздуху поступать в глубину его тела. Это одна из причин, почему размеры насекомых имеют жёстко заданный «потолок». Большинство водных животных избрали жаберный тип дыхания. Жабры – это особые разветвленные выросты тела – наружные (как, скажем, у аксолотлей) или внутренние (как у костных рыб или многих ракообразных). Чтобы не задохнуться, таким животным приходится постоянно омывать их свежей водой. Рыбы делают это так: набирают воду в рот, а затем, закрыв рот, выталкивают её через жаберные щели. Жабры густо пронизаны кровеносными сосудами: кровь разносит кислород по всему телу. Более подробно о кожном дыхании можно прочитать в разделе 3.4. нашей книги.

Что же надо сделать для восстановления нормального газообмена в организме, а значит и здоровья? Ответ даётся [23] в виде лаконичных как формулы соотношений:

Восстановить нормальное здоровье = нормальное дыхание = нормальное содержание CО2 в крови = нормальный тонус (просвет) микрососудов.

Восстановление способности организма поддерживать оптимальную концентрацию CО2 в крови – необходимое условие и единственный способ избавления как от многих болезней, так и от разрушающих организм медикаментов.

Будем правильно дышать!

Подняться наверх