Читать книгу Multivalued Maps And Differential Inclusions: Elements Of Theory And Applications - Valeri Obukhovskii - Страница 12

1.2.1Small and complete preimages of a set

Оглавление

Let X, Y be sets, F : XP(Y) a multimap.

Definition 1.2.1. The small preimage of a set DY is the set


Definition 1.2.2. The complete preimage of a set DY is the set


It is clear that .

Let AX; DY; {Dj}j∈J a family of subsets of Y, J a set of indices. The next properties of small and complete preimages follow immediately from the definitions (verify!).

Lemma 1.2.3.


Lemma 1.2.4.


Let us observe the properties of small and complete preimages while passing to various set-theoretic operations on multimaps.

Definition 1.2.5. Let F0, F1 : XP(Y) be multimaps. The multimap F0F1 : XP(Y),


is called the union of the multimaps F0 and F1.

Definition 1.2.6. Let F0, F1 : XP(Y) be multimaps such that F0(x) ∩ F1(x) ≠ for all xX. The multimap F0F1 : XP(Y),


is called the intersection of the multimaps F0 and F1.

The following properties can be easily verified (do it!).

Lemma 1.2.7. If DY then

(a) ;

(b) .

Lemma 1.2.8. If DY then

(a) ;

(b) .

Definition 1.2.9. Let X, Y, and Z be sets, F0 : XP(Y), F1 : YP(Z) multimaps. The multimap F1F0 : XP(Z),


is called the composition of the multimaps F0 and F1.

Lemma 1.2.10. Let DZ then

(a) ;

(b) .

Verify these relations!

Definition 1.2.11. Let X, Y0, and Y1 be sets, F0 : XP(Y0), F1 : XP(Y1) multimaps. The multimap F0 × F1 : XP(Y0 × Y1),


is called the Cartesian product of the multimaps F0 and F1.

Lemma 1.2.12. Let D0Y0, D1Y1, then

(a) ;

(b) .

Verify these relations!

Multivalued Maps And Differential Inclusions: Elements Of Theory And Applications

Подняться наверх