Читать книгу Пострефлекторная нейробиология поведения - Варвара Дьяконова - Страница 10
Часть I
Cамодвижение идей
2016
Мультитрансмиттерность доступна моделированию
Оглавление[Комментарий к докладу Л. Ю. Жиляковой на VII Международной конференции по когнитивной науке, Светлогорск, 20–25 июня 2016 года // Новости биологии развития (сайт ИБР РАН URL: http://idbras.comcor.ru/?show=content44; дата обращения: 07.07.2016)]
Дьяконова В. Е. Сделан первый шаг на пути к математическому моделированию «разноцветного» мозга
Среди многих интересных и концептуальных сообщений на седьмой конференции по когнитивной науке хочется отметить доклад, который, с моей точки зрения, может стать началом для действительно нового и, главное, адекватного с биологической точки зрения подхода к математическому моделированию нервной системы.
На протяжении многих лет основной парадигмой в моделировании мыслительных и поведенческих процессов является коннекционизм – подход, в котором модель представляет собой сложную сеть из связанных между собой относительно простых и одинаковых элементов. Наиболее распространенная форма коннекционизма – искусственные нейронные сети, в которые объединены формальные нейроны. Модель формального нейрона и нейронной сети была предложена У. Маккалоком и У. Питтсом еще в 1943 г. [8]. В то время многие важные свойства нейронов не были открыты. Математически, формальный нейрон – это пороговый элемент с единственным выходом, функция активации которого зависит от линейной комбинации всех входных сигналов. Нейронные сети успешно применяются в распознавании образов, классификации, кластеризации, прогнозировании, решении ряда вычислительных и оптимизационных задач. Появившиеся в последнее десятилетие «сложные сетевые модели» были успешно применены для описания связей во многих биологических и социальных системах, включая сети мозга, где получили название «структурная и функциональная коннектомика» [6, 7].
Однако искусственные нейронные сети и структурная коннектомика всё еще имеют очень мало общего с процессами, происходящими в живых нервных системах. Эти модели основываются на идее «проволочного мозга», в котором он представляется электрической сетью с жестко заданной топологией, которая образуется проводами, соединяющими одинаковые «пассивные» нейроны. Многие важные свойства, присущие живым нейронным сетям, в таких терминах описать невозможно. Современные исследования свидетельствуют о том, что (1) нейроны не одинаковы – они являются трансмиттер-специфическими; (2) большинство нейронов способны генерировать собственную электрическую активность, а не только в ответ на возбуждающий внешний сигнал; (3) выброс трансмиттеров происходит в общее межклеточное пространство, а не только в синаптическую щель; (4) перестройка топологии сетей и изменение режимов активности нейронов происходят ad hoc – под действием разных нейротрансмиттеров [1, 4, 5].
Л. Жилякова (ИПУ РАН) предложила математическую модель, которая развивает концептуальную модель гетерохимического генератора, предложенную еще тридцать лет назад Д. А. Сахаровым [3]. Модель учитывает принципиальные для функционирования реальной системы свойства биологических нейронов. Ее формальный нейрон обладает не только электрическим зарядом, но и химическими входами (рецепторами к разным нейротрансмиттерам) и химическим выходом (секретируемый нейротрансмиттер). Нейроны в этой модели «разноцветны», отличаются по входам и выходам, т. е. секретируют разные нейротрансмиттеры и по-разному реагируют на разные химические сигналы. Кроме того, они «не пассивны», обладают собственной, а не только вызванной активностью. Сеть из таких нейронов названа гетерогенной нейронной сетью. При этом термин «сеть» не означает наличия лишь электрических связей – любая химическая связь в ней может быть отражена теми же математическими средствами. Каждый значимый в этой сети трансмиттер может выделить свою подсеть. Переключение между сетями производится с учетом пороговых характеристик. Модель, обладающая такими свойствами, порождает сети с топологией, способной динамически изменяться при изменении концентраций тех или иных трансмиттеров в среде.
Уже сформулирована модель для простого моторного генератора (3 нейрона, 3 фазы ритма, 2 внутренних и 2 внешних нейротрансмиттера, способность к перестроению). Эта модель соответствует реальным биологическим характеристикам известных центральных генераторов паттерна (Central Pattern Generators). В частности, появление «эндогенной активности» нейронов автоматически привело к доминированию тормозных (как в биологических генераторах), а не возбуждающих (как в прежних сетевых моделях) связей. Трансмиттер-специфические перестройки сходны с наблюдаемыми в реальности благодаря наличию межклеточной среды и разноцветного нейромодуляторного фона. И наконец, жесткие синаптические связи оказались не необходимыми для работы модели, такой генератор «связан» химически изначально, что соответствует реальному онтогенезу нервной системы, в которой нейротрансмиттерная специфичность задается до установления синаптических связей. Помимо перечисленных преимуществ, модель дала ответ на частный нейробиологический вопрос: как трехфазный генератор может работать не на трех, а на двух нейротрансмиттерах?
Основная работа – еще впереди. На сегодняшний день важно то, что шаг в этом необходимом и правильном направлении наконец сделан. Нейробиологи и медики могут надеяться на биологически адекватное математическое моделирование реальных нейронных взаимодействий. А поскольку уже есть первые попытки создания физических аналогов хемочувствующих и хемо-секретирующих нейронов для протезирования нервной системы, появляется вероятность использования гетерогенной нейронной сети не только в фундаментальной, но и в прикладной науке.
Литература
[1] Дьяконова В. Е. Нейротрансмиттерные механизмы контекст-зависимого поведения // Журн. высш. нервн. деят. 2012. Т. 62. № 6. С. 1–17.
[2] Жилякова Л. Ю. Сетевая модель распространения нескольких видов активности в среде сложных агентов и ее приложения // Онтология проектирования. 2015. Т. 5. № 3 (17). С. 278–296.
[3] Сахаров Д. А. Синаптическая и бессинаптическая модели нейронной системы // Простые нервные системы. Ч. 2. Казань: КГУ, 1985.С. 78–80.
[4] Сахаров Д. А. Биологический субстрат генерации поведенческих актов // Журн. общ. биол. 2012. Т. 73. № 5. С. 334–348.
[5] Bargmann C. I. Beyond the connectome: how neuromodulators shape neural circuits // Bio-essays. 2012. No. 34. P. 458–465.
[6] Baronchelli A., Ferrer-i-Cancho R., Pastor-Satorras R., Chater N., Christiansen M. H. Networks in Cognitive Science // Trends in Cognitive Sciences. 2013. Vol. 17. No. 7.
[7] Bullmore E., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems // Nature Reviews Neuroscience. 2009. Vol. 10. P. 186–198.
[8] McCulloch W. S., Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943. Vol. 5. P. 115–133. (Рус. пер.: Маккаллок У. С., Питтс У. Логическое исчисление идей, относящихся к нервной активности // Автоматы / Под ред. К. Э. Шеннона и Дж. Маккарти. М.: ИЛ, 1956. С. 362–384.)