Читать книгу Пострефлекторная нейробиология поведения - Варвара Дьяконова - Страница 12
Часть I
Cамодвижение идей
2018
Нейрон прогнозирует будущее
Оглавление[Тезисы доклада на Международной конференции по когнитивной науке, Светлогорск, октябрь 2018]
Дьяконова В. Е., Дьяконова Т. Л. Как прошлое и настоящее конкурируют за будущее на уровне отдельного нейрона
Известно, что прошлый опыт, особенно необычный или стрессирующий, запоминается организмом и влияет на прогнозирование будущих событий. Память о таком опыте может сохраняться в течение длительного времени и проявляться в измененном внутреннем состоянии и поведенческом выборе. Этот хорошо известный психологам и физиологам человека факт получает подтверждение в исследованиях на животных. Недавно было показано, что даже сравнительно простой беспозвоночный организм, такой как моллюск, опирается на «воспоминания о прошлом опыте» при принятии решений [1, 2]. Так, улитки, которые испытали длительный период лишения пищи, в течение многих дней после прекращения голода демонстрировали аппетит на сахарозу, за которую их наказывали электрическим ударом, и этим существенно отличались от контрольных животных. Напрашивалось предположение, что длительное отсутствие еды организм улитки запомнил, «скорректировал модель внешней среды» и адаптировал под нее свое поведение. Далеко не всегда учет прошлых событий приводит к правильному прогнозу (как и в описанной выше экспериментальной модели). Понять, в какой момент можно считать, что «прошлое не вернется», и исключить его из возможных сценариев развития событий – непростая и одновременно очень важная задача для организмов самого разного уровня организации.
Удивительно мало известно о том, как прошлый опыт и текущая ситуация взаимодействуют на клеточном уровне. В настоящее время господствует представление о ключевой роли «синаптических весов» и переконфигурации нейронных сетей в механизмах разного рода памяти. Однако в последние годы появились работы, оспаривающие это представление экспериментально [3, 4, 5, 6] и теоретически [7, 8, 9]. Аргументируется существование механизмов памяти на уровне отдельного нейрона. В сложной системе нейронов млекопитающих довольно трудно показать памятный след в пределах одной клетки и определить его зависимость от влияния ансамбля. Возможное участие всех видов несинаптических событий, в том числе экстрасинаптического нейромодулирующего воздействия, в механизмах хранения и модификации памяти не было выяснено в сложных системах.
Нервная система моллюсков дает уникальную возможность исследовать взаимодействия между одной клеткой и ансамблем нейронов. Идентифицированные нейроны можно изолировать из системы при непрекращающейся регистрации их активности [10, 11]. Кроме того, их можно использовать в качестве подвижных биосенсоров для мониторинга экстрасинаптического высвобождениия нейромодуляторов из определенных частей нервной системы [12]. Ранее мы показали, что вынужденная мышечная локомоция в низкой воде приводит к долгосрочным изменениям поведения и активности клеток у прудовика [13]. Эту простую модель памяти предыдущего опыта мы использовали для выяснения возможных механизмов хранения и стирания опыта на клеточном уровне. Полученные результаты показывают, что в исследуемой модели прошлый опыт может храниться в измененных свойствах электровозбудимой мембраны нейрона, в то время как текущая ситуация (контекст) контролирует проявление индивидуальной памяти нейрона посредством изменений в его нейрохимическом микроокружении.
Литература
[1] Mita K., Okuta A., Okada R., Hatakeyama D., Otsuka E., Yamagishi M., Morikawa M., Naganuma Y., Fujito Y., Dyakonova V., Lukowiak K., Ito E. What are the elements of motivation for acquisition of conditioned taste aversion? // Neurobiol. Learn. Mem. 2014. Vol. 107. P. 1–12.
[2] Ito E., Yamagishi M., Hatakeyama D., Watanabe T., Fujito Y., Dyakonova V., Lukowiak K. Memory block: a consequence of conflict resolution // J. Exp. Biol. 2015. Vol. 218. P. 1699– 1704.
[3] Nikitin E. S., Vavoulis D. V., Kemenes I., Marra V., Pirger Z., Michel M., Feng J., O’Shea M., Benjamin P. R., Kemenes G. Persistent sodium current is a nonsynaptic substrate for long-term associative memory // Curr. Biol. 2008. Vol. 18. P. 1221–1226.
[4] Johansson F., Jirenhed D. A., Rasmussen A., Zucca R., Hesslow G. Memory trace and timing mechanism localized to cerebellar Purkinje cells // Proc. Natl. Acad. Sci. USA. 2014. Vol. 111(41). P. 14930–14934.
[5] Ryan T. J., Roy D. S., Pignatelli M., Arons A., Tonegawa S. Engram cells retain memory under retrograde amnesia // Science. 2015. Vol. 348 (6238). P. 1007–1013.
[6] Dyakonova V. E., Hernádi L., Ito E., Dyakonova T. L., Chistopolsky I. A., Zakharov I. S., Sakharov D. A. The activity of isolated neurons and the modulatory state of an isolated nervous system represent a recent behavioural state // J. Exp. Biol. 2015. Vol. 218. P. 1151–1158.
[7] Sandler U., Tsitolovsky L. Neural Cell Behavior and Fuzzy Logic. Springer, 2008.
[8] Johansson F., Hesslow G. Theoretical considerations for understanding a Purkinje cell timing mechanism // Commun. Integr. Biol. 2014. Vol. 7. No. 6.
[9] Gallistel C. R., Balsam P. D. Time to rethink the neural mechanisms of learning and memory // Neurobiol. Learn. Mem. 2014. Vol. 108. P. 136–144.
[10] Dyakonova V. E., Chistopolsky I. A., Dyakonova T. L, Vorontsov D. D., Sakharov D. A. Direct and decarboxylation-dependent effects of neurotransmitter precursors on firing of isolated monoaminergic neurons // J. Comp. Physiol. A. 2009. Vol. 195. P. 515–527.
[11] Dyakonova T. L., Dyakonova V. E. Coordination of rhythm-generating units via NO and extrasynaptic neurotransmitter release // J. Comp. Physiol. A. Neuroethol. Sens. Neural. Behav. Physiol. 2010. Vol. 196. P. 529–541.
[12] Чистопольский И. А., Сахаров Д. А. Изолированный нейрон как биосенсор, реагирующий на высвобождение нейроактивных веществ // Рос. физиол. журн. 2007. Т. 93. С. 1210–1213.
[13] Korshunova T. A., Vorontsov D. D., Dyakonova V. E. Previous motor activity affects transition from uncertainty to decision-making in snails // J. Exp. Biol. Vol. 219. P. 3635–3641.