Читать книгу La máquina genética - Venkatraman Ramakrishnan - Страница 13
2. Mi encuentro con el ribosoma
ОглавлениеNo hay más que mencionar el ADN para que casi cualquier persona asienta con un gesto de complicidad. Todos sabemos —o creemos saber— qué es el ADN. Determina quiénes somos en esencia y qué le heredamos a nuestros hijos. El ADN se ha convertido en una metáfora de las cualidades fundamentales de casi todo. “No está en su ADN”, decimos incluso al hablar de una empresa.
Pero si dices la palabra ribosoma, por lo general recibirás una mira-da ausente, incluso de la mayor parte de los científicos. Hace unos años, Quentin Cooper, del programa de radio de la bbc Material World, me contó que al invitado de la semana anterior lo indignó que el tema del ojo sólo mereciera la mitad de un programa cuando se había planeado un episodio completo para el ribosoma, que apenas es una simple molécula. Por supuesto, los ribosomas, o las proteínas que éstos a su vez producen, no sólo constituyen la mayor parte de los componentes del ojo sino también casi todas las moléculas de cada célula de cada forma de vida. De hecho, para cuando usted haya terminado de leer esta página, los ribosomas de cada uno de los billones de células de su cuerpo habrán producido miles de proteínas distintas. Existen millones de formas de vida sin ojos, pero todas necesitan ribosomas. El descubrimiento del ribosoma y su papel en la construcción de proteínas es la culminación de uno de los grandes triunfos de la biología moderna.
Cuando llegué a California a estudiar biología, no tenía idea, como la mayor parte de los físicos, de qué era el ribosoma y apenas tenía una vaga noción de qué era un gen. Sabía que los genes transportan los rasgos que recibimos de nuestros ancestros y que le heredamos a nuestros descendientes, pero aprendí que son mucho más que eso. Son las unidades de información que permiten que un organismo completo se desarrolle a partir de un solo óvulo fertilizado. Aunque casi todas las células contienen un juego completo de genes, en distintos tejidos están encendidos conjuntos diferentes de ellos, así que una célula del pelo o la piel es muy distinta de una del hígado o el cerebro. ¿Pero, de entrada, qué son los genes?
En términos generales, un gen es un trozo de ADN que contiene información sobre cómo y cuándo hacer una proteína. Las proteínas llevan a cabo miles de funciones vitales. Por ejemplo, son lo que hace que se muevan los músculos. Nos permiten sentir la luz, las texturas y el calor, y combatir las enfermedades. Llevan oxígeno de nuestros pulmones a nuestros músculos. Incluso pensar y recordar es posible gracias a las proteínas. Muchas proteínas llamadas enzimas catalizan las reacciones químicas que construyen los otros miles de moléculas en la célula. Así pues, las proteínas no sólo le dan a la célula su estructura y su forma sino que también la hacen funcionar.
FIGURA 2.1. Estructura del ADN.
Comprender cómo la información en un trozo de ADN podría usarse para hacer una proteína fue la culminación de una emocionante década que comenzó con un artículo clásico de 1953 de James Watson y Francis Crick sobre la estructura de la doble hélice del ADN. A menudo, la estructura de una molécula no explica inmediatamente cómo funciona. Eso no pasa con el ADN, que de inmediato sugirió cómo podía transmitir información y a la vez cómo podía reproducirse. Durante mucho tiempo había sido un misterio cómo se duplica la información en una célula cuando se divide o cómo su descendencia hereda esa información cuando el organismo se reproduce.
FIGURA 2.2. Proteínas.
En cada molécula, las dos hebras de ADN que se entrelazan para formar una doble hélice corren en direcciones opuestas. Cada hebra tiene una columna vertebral de azúcares y grupos fosfato alternados, y uno de cuatro tipos de bases —A, T, C o G— se fijan al azúcar y miran hacia el interior de la hélice. Cuando jugaba con siluetas de cartón de las bases, a Watson se le ocurrió una idea brillante: se dio cuenta de que una A en una de las hebras puede unirse químicamente con una T de la otra hebra, pero no con cualquiera de las demás bases, mientras que la G de una hebra puede hacerlo con una C de la otra. La forma de cada par de bases, ya sea AT o CG, era más o menos la misma, lo que significa que, sin importar el orden de las bases, la forma general y las dimensiones de la doble hélice eran más o menos las mismas. Esta disposición en pares de bases significaba que el orden de las bases en una hebra determinaría con precisión el orden en la otra. Cuando las células se dividieran, ambas hebras se separarían y cada una contaría con información que serviría como plantilla para construir la hebra contraria, dando como resultado dos copias de la molécula de ADN a partir de una sola. Así, los genes eran capaces de duplicarse a sí mismos. Después de siglos, finalmente entendimos en términos moleculares cómo pueden transmitirse los rasgos hereditarios de generación en generación.
FIGURA 2.3. Transcripción: un gen cifrado en forma de ADN se copia a un ARN mensajero.
La estructura sugirió de inmediato cómo podían duplicarse y heredarse los genes, pero no cómo la información contenida en ellos podía usarse para construir proteínas. El problema era que cada hebra de ADN es una larga cadena compuesta de ladrillos compuestos a su vez por los cuatro tipos de bases, pero las proteínas son cadenas completamente distintas, hechas de aminoácidos, y sus enlaces químicos son totalmente diferentes. Su enorme variedad se debe a que existen 20 tipos de aminoácidos, que tienen una amplia variedad de propiedades químicas. Cada cadena de proteínas tiene una longitud y un orden único de aminoácidos, y sorprendentemente contiene la información necesaria para que la cadena se pliegue en una forma característica que le permite desempeñar su función particular. Crick comprendió que el orden de las bases en el ADN codificaba el orden de los aminoácidos en una proteína, pero la pregunta aún era cómo.
Por más de una década, muchísimas personas trabajaron en este problema. Resulta que la tira de ADN que contiene un gen se copia en una molécula emparentada llamada ARN mensajero o ARNm, cuyo nombre se debe a que dicha molécula transporta el “mensaje” genético a donde se necesita. El ARN —sigla que significa ácido ribonucleico— se distingue del ADN —o ácido desoxirribonucleico— en que tiene un oxígeno extra en el anillo de azúcares. El ARN también tiene cuatro bases, pero en éste la base timina (T) del ADN es reemplazada por una base muy similar, el uracilo (U), que también se une a la base A.
¿Cómo pasas de tener cuatro tipos de bases a veinte tipos de aminoácidos? Es como seguir una larga serie de instrucciones escritas en algún código usando un alfabeto desconocido. Resulta que las bases se leen en grupos de tres y cada uno de esos grupos se llama codón. La forma en que se leen —y esto lo predijo Crick— es que otra molécula de ARN, llamada ARN de transferencia o ARNt, tiene un aminoácido especial en un extremo y un grupo de tres bases llamado anticodón en el otro. El anticodón y el codón forman pares de bases, iguales que los que existen entre las dos hebras de ADN. El próximo codón es reconocido por un ARNt diferente, que lleva consigo su propio aminoácido, etcétera.
FIGURA 2.4. ARN de transferencia: las moléculas adaptadoras que acarrean aminoácidos y leen el código del ARN mensajero.
El siguiente gran descubrimiento fue que nada de esto ocurre por sí solo. Los biólogos celulares descubrieron partículas en las células en donde se lee el ARNm y se fabrican las proteínas. Estas partículas eran diminutas para los estándares normales: caben unas cuatro mil en el grosor de un cabello humano y se cuentan por miles en cada célula, desde las bacterias hasta las de los seres humanos, pero son enormes en términos moleculares. Cada una contiene unas 50 proteínas y tres grandes fragmentos de su propio ARN: un tercer tipo de ARN (además del ARNm y el ARNt). Al principio, los científicos se referían a estas partículas como “partículas de ribonucleoproteína de la fracción microsomal” porque estaban hechas tanto de ARN como de proteínas y se habían aislado de fragmentos celulares conocidos como microsomas. Era un poco un trabalenguas, así que, en una conferencia que se celebró a fines de la década de 1950, Howard Dintzis sugirió el nombre ribosoma, que es como se le ha llamado desde entonces. Dintzis también fue la primera persona que determinó la dirección en la que se construye una cadena de proteínas. Confieso con vergüenza que, tras trabajar por 30 años en esta disciplina, no conocía a Dintzis ni su trabajo. Cuando finalmente lo conocí en 2009 en la Universidad Johns Hopkins, a donde fui invitado para dar una conferencia bautizada en su honor, él seguía comprensiblemente orgulloso de haber acuñado la palabra.
FIGURA 2.5. Composición de los ribosomas.
El ribosoma completo tiene medio millón de átomos. Puesto que es el vínculo entre nuestros genes y las proteínas que éstos determinan, el ribosoma se encuentra en la encrucijada misma de lo vivo. Pero, aunque todo mundo entendía esto, nadie sabía qué aspecto tenían los ribosomas, más allá de que eran una masa amorfa compuesta de dos partes. Y ése era un auténtico problema. De algún modo el ribosoma se unía al ARNm y juntos agrupaban los aminoácidos que transportaban hasta allí los ARNt para formar una proteína. Pero, sin saber qué aspecto tenía, ¿cómo podíamos entender cómo funciona el conjunto?
Imagínate que eres un marciano que observa la Tierra desde las alturas. Puedes ver objetos diminutos en la superficie que se mueven sobre todo en línea recta y de vez en cuando hacen giros en ángulos rectos. Si pudieras acercarte un poco, verías que estos objetos se mueven únicamente cuando entran en ellos objetos aún más pequeños y que dejan de moverse cuando salen. Si contaras con sensores, podrías determinar que consumen hidrocarburos y oxígeno, y que emiten dióxido de carbono y agua, así como algunos contaminantes y calor. Pero no tendrías la menor idea de qué son realmente estos objetos y mucho menos de cómo funcionan. Sólo conociendo detalladamente la estructura del objeto, podrías saber que está hecho de cientos de componentes que funcionan juntos y que tiene un motor conectado a un cigüeñal que hace girar las ruedas. Necesitarías conocer aún más detalles para saber que el motor mismo tiene cámaras con pistones que reciben una mezcla de combustible y oxígeno que se enciende gracias a una bujía y que esto empuja el pistón.
Ocurre lo mismo cuando tratamos de entender las moléculas. Conocer la estructura precisa del ADN revolucionó nuestras ideas sobre cómo consigue almacenar, transmitir y replicar información genética. Pero el ribosoma no era una molécula sencilla como el ADN. Era enorme y compleja, y parecía demasiado intimidante e inabordable.
FIGURA 2.6. Alfred Tissières y James Watson, dos pioneros de la investigación del ribosoma (cortesía del Cold Spring Harbor Laboratory).
Muchos grandes científicos, como Crick, que desempeñaron papeles clave para determinar cómo se codifica la información en el ADN, se dieron por vencidos con el ribosoma y dejaron ese tema para estudiar otros problemas. Sydney Brenner, otro eminente colega de Crick y uno de los descubridores del ARNm, dijo en la década de 1960 que la estructura del ribosoma era un problema trivial y no hacía falta estudiarlo en Cambridge, puesto que este tipo de trabajo sería realizado, en cualquier caso, por los estadounidenses. Esto me recuerda cuando el senador George Aiken dijo, respecto de la irresoluble guerra de Vietnam, que “Estados Unidos debería declarar que había ganado y salir de ahí”. Uno de los primeros biólogos moleculares que insistió en estudiar el ribosoma fue Watson, que trabajó en el problema con Alfred Tissières, un bioquímico de Ginebra que estaba de visita en su laboratorio. Casi 40 años más tarde, en una reunión en Cold Spring Harbor en 2001, Watson rememoró esos días y recordó que, en cuanto entendió lo complejo que era el ribosoma, supo de inmediato que nunca conoceríamos su estructura.
Cuando me instalé en el laboratorio de Mauricio Montal, el ribosoma no estaba para nada en mis planes, pero, tras pasar allí unos pocos meses, me encontré en Scientific American un artículo sobre el tema que cambiaría mi vida. El artículo describía cómo se puede ubicar la multitud de proteínas distintas en el ribosoma usando dispersión de neutrones, una técnica que conocían los físicos pero que casi no se usaba en biología. Los autores eran Don Engelman y Peter Moore, y recordé que Don fue una de las personas que expresaron su interés en tenerme como estudiante de posdoctorado durante mi tránsito de la física a la biología. Pensé que, si me había querido sin tener ninguna formación en biología, podría estar aún más interesado ahora que ya había aprendido algo sobre la disciplina y tenía más de un año de experiencia en el laboratorio. También se me ocurrió que había aprendido suficiente biología como para hacer investigación en esta área y que no necesitaba obtener un segundo doctorado.
Así que le escribí a Don para recordarle nuestra correspondencia previa y le conté que ahora estaba aún más preparado para un posdoctorado. Puesto que sabía que su principal interés, igual que el de Mauricio, eran las membranas y las proteínas de las membranas, le expliqué que me gustaría trabajar sobre ese tema en su laboratorio. Respondió informándome que no tenía ningún lugar disponible, pero que su colaborador Peter Moore sí, y que, si iba con él y trabajaba con ribosomas, podría hacer algo de investigación sobre membranas en mi tiempo libre. Para entonces yo sabía que los ribosomas eran de una importancia fundamental, así que accedí. Resultó después que no tendría nada de “tiempo libre”.
Peter escribió poco después para informarme que iría a San Diego para un congreso y que le daría gusto conocerme. Fui al centro para verlo y me llamó la atención su característico atuendo elegante, con una chaqueta de pana marrón, y sus gruesos anteojos y sus modales que respondían perfectamente al estereotipo de un intelectual de la Ivy League. Y en efecto lo era. Entró muy joven a la competitiva vida académica y se quedó para siempre, y nunca supe si de verdad entendía qué se sentía no haber pertenecido toda la vida a instituciones de élite. Su padre era un pionero de la cirugía de trasplantes en Harvard y Peter mismo había estudiado en escuelas privadas y luego en Yale antes de hacer su posgrado en Harvard, donde trabajó con Watson en el ribosoma. Después comenzó a trabajar en Ginebra con Alfred Tissières —amigo y colaborador de Watson—, que para entonces ya era puntero en la investigación del ribosoma. Allí se dedicó a purificar las diferentes proteínas que lo conforman.
Cuando se dio cuenta de que la clave para entender el ribosoma era descifrar su estructura y que tenía que aprender análisis estructural, dejó Ginebra y viajó al Laboratorio de Biología Molecular (LMB, por las siglas de Laboratory of Molecular Biology) del Medical Research Council (MRC) en Cambridge, Inglaterra. Este laboratorio era un descendiente directo de la unidad MRC en la que Watson y Crick hicieron su trabajo sobre ADN y que para entonces se había convertido en una Meca para estudiar las estructuras de toda clase de moléculas biológicas. Los estadounidenses se referían al laboratorio como el MRC, como si fuera el único de los muchos laboratorios que el Medical Research Center financiaba en todo el país que fuera digno de conocerse. Los británicos lo llamaban MRC-LMB o sencillamente LMB, como se le conoce actualmente.
FIGURA 2.7. Peter Moore hacia 1980, cuando el autor trabajó en su laboratorio en Yale (cortesía de Peter Moore).
Al final de su temporada en el LMB, Peter regresó como profesor a Yale, su alma máter, donde permanece hasta ahora. Tiene un sentido del humor mordaz y un cúmulo de conocimientos que va desde todos los aspectos de la ciencia hasta la historia y los clásicos. Aunque es un hombre tímido y reservado, pierde su reticencia natural cuando se trata de ciencia. Sus conferencias eran articuladas y salpicadas de humor, y generaciones de estudiantes y científicos de Yale debieron enfrentarse a su ira cada vez que presentaron argumentos descuidados.
Cuando lo vi en el congreso de San Diego donde nos conocimos, estaba solo, esperándome en medio de un mar de gente que pasaba. Tras un breve saludo, conversamos un poco sobre mi formación y su proyecto. No supe qué tal me fue en esa entrevista informal, pero poco después me escribió para invitarme a visitar Yale. Mi estancia allí fue muy agradable. A pesar de mi evidente ingenuidad, Peter me ofreció formalmente un puesto y acepté de inmediato. Pasé el resto del año académico terminando el trabajo en el laboratorio de Mauricio. Finalmente, cuando acabó el vera-no, viajé a New Haven y recogí a mi familia camino a Ohio, donde habían pasado las últimas semanas.
Llegué al laboratorio de Peter en el otoño de 1978. Me sentía inquieto. Ahora que realmente debía hacer investigación posdoctoral en Yale, mi confianza anterior se evaporó, porque, a pesar de mis dos años de posgrado en biología, tenía muy poca experiencia en investigación biológica real. A pocos días de mi llegada, Peter y yo nos encontramos caminando el uno hacia el otro en un largo pasillo en el neogótico Laboratorio de Quí-mica Sterling, pero cuando estuvimos cerca apartó la mirada. Me preocupaba que tan pronto se hubiera arrepentido de contratarme, pero su técnica de muchos años Betty Rennie se rio y me explicó que era su forma de ser. Como sea, siempre fue muy amable conmigo y a un año de entrar debí haberle parecido lo suficientemente competente como para dejarme solo un año entero mientras se iba de sabático a Oxford. En su ausencia, me dejé crecer una barba que conservé por casi 25 años.
Cuando empecé a trabajar para Peter, ya se habían determinado algunos datos básicos sobre el ribosoma. Todos los ribosomas tienen dos partes, conocidas como la subunidad mayor y la menor. La subunidad menor se fija al ARNm que contiene la información genética, mientras que la subunidad mayor une los aminoácidos que llevaron hasta allí los ARNt para hacer una proteína. Hay tres espacios para los ARNt: uno que recibe el nuevo aminoácido, otro que sostiene la cadena de proteínas en crecimiento y uno más que es una especie de zona de transición antes de que el ARNt sea expulsado del ribosoma. Durante el proceso, los ARNt pasan en el ribosoma de un espacio al siguiente y al moverse arrastran el ARNm consigo, de modo que de hecho el ribosoma se desplaza a lo largo del ARNm y permite que los ARNt lean un codón tras otro para hacer la proteína en turno. Cada paso necesita la ayuda de proteínas que se fijan y abandonan el ribosoma en distintas etapas, y cada paso consume energía. Puesto que emplea energía y se mueve durante este proceso de enorme complejidad, el ribosoma se conoce como una máquina molecular o nanomáquina.
Además de su papel biológico fundamental, en la encrucijada entre los genes y las proteínas que éstos codifican, existía una razón práctica para interesarse por el ribosoma. A lo largo de los años la gente había notado que muchos antibióticos funcionan bloqueando algunos de los diferentes pasos del ribosoma. Puesto que los ribosomas humanos son lo suficientemente distintos de los que poseen las bacterias, algunos antibióticos se unen a los ribosomas de éstas y son útiles para tratar enfermedades infecciosas. Sin embargo, las bacterias se vuelven cada vez más resistentes a los antibióticos; saber exactamente de qué formas dichas sustancias se unen al ribosoma ayudaría a diseñar mejores medicamentos.
Estos hechos básicos ya estaban consignados en los libros de texto, así que, cuando le contaba a la gente que estaba trabajando en el ribosoma, con frecuencia me preguntaban: “Pero ¿no está eso ya resuelto?” A veces la pregunta iba acompañada de una mirada de lástima, como si fuera un pobre infeliz que trataba de encontrar el hilo negro de un problema que había dejado de ser interesante. Lo cierto es que, aunque existía un esbozo de las funciones del ribosoma, no teníamos idea de cómo llevaba a cabo ni siquiera uno de los muchos complicados pasos que se requieren para fabricar una proteína. Era como si supiéramos un poco más sobre cómo es un automóvil —como si descubriéramos que tiene cuatro ruedas y ventanas, y un conductor que se sienta tras un volante—, pero no entendiéramos nada sobre cómo funciona.
Como ocurre con muchos otras disciplinas, la ciencia tiene sus modas y en cada época algunas áreas se consideran más interesantes que otras; con frecuencia son aquellas en las que se están haciendo rápidos progresos. Muchos científicos cambian de problema tan pronto como empieza a resultar demasiado difícil avanzar. Los científicos muy creativos abren áreas totalmente nuevas, pero otros sencillamente saltan de un área atractiva a otra. Si todos hicieran lo mismo, nuestra comprensión de los fenómenos sería muy superficial, pero por suerte también hay quienes se quedan con un problema sin importar qué tan viejo o difícil sea, hasta llegar al fondo del asunto.
Aunque el ribosoma había sido estudiado por un par de décadas, nadie sabía dónde estaban ubicadas las cerca de 50 proteínas que lo forman y mucho menos qué función desempeñaban. Peter colaboraba con Don Engelman para abordar este problema. En cierto sentido, no podían haber sido más distintos. A diferencia de Peter, de talante reservado, Don era un nativo de California alto y gregario, con una barba primorosamente cuidada, una resonante voz de barítono y un estilo afable que transmitía una gran autoridad sin importar el tema de conversación. Estudió en el Reed College de Portland, obtuvo su doctorado en Yale y luego hizo un posdoctorado con Maurice Wilkins, el “tercer hombre” del ADN, donde trabajó en la estructura de las membranas que envuelven a todas las células. A diferencia de Peter, que consagró toda su vida a estudiar uno u otro aspecto del ribosoma, los intereses de Don eran más diversos.
Don y Peter habían asistido a una conferencia dictada por Benno Schoenborn, del Brookhaven National Lab, sobre cómo podían usarse los neutrones para estudiar estructuras biológicas. Los neutrones eran algo de lo que sólo se ocupaban los físicos y además se necesitaba un reactor nuclear para producir suficientes como para realizar un experimento. Pero para la biología lo que resultaba interesante de los neutrones era que el hidrógeno y su isótopo más pesado, el deuterio, interactúan de formas muy distintas con los neutrones; además, el hidrógeno representa la mitad de los átomos en moléculas biológicas como las proteínas y el ARN.
La charla les dio a Don y a Peter la idea de tratar de determinar dónde estaban ubicadas las proteínas ribosomales. Se dieron cuenta de que, si se pudiera construir un ribosoma en el que sólo dos de las proteínas tuvieran átomos de deuterio en vez de hidrógeno, esas dos proteínas dispersarían los neutrones de forma distinta.
Era posible obtener proteínas deuteradas cultivando bacterias en agua pesada, que no es otra cosa que óxido de deuterio. Luego había que volver a armar un ribosoma en el que dos proteínas específicas estuvieran deuteradas. Masayasu Nomura, en Wisconsin, había demostrado que es factible extraer bioquímicamente las 20 proteínas de la subunidad ribosomal menor y purificarlas a partir de la mezcla mediante cromatografía. Luego se pueden mezclar todos los componentes en una solución y, con las condiciones adecuadas, reensamblar una subunidad menor funcional a partir de las proteínas purificadas y el ARN. Así se podría obtener una subunidad menor en la que sólo dos de las proteínas han sido reemplazadas por sus contrapartes deuteradas. Estas subunidades ribosomales podían llevarse a un reactor nuclear en el Brookhaven National Lab, en medio de Long Island, para exponerlas a un haz de neutrones. Cada iteración del experimento arrojaría la distancia entre un par de proteínas; midiendo las distancias entre muchos pares, podría determinarse cómo estaban dispuestas en tres dimensiones, de forma muy parecida a la triangulación que hicieron los primeros topógrafos para cartografiar terrenos desconocidos. El proyecto exigía realizar las mismas mediciones tediosas una y otra vez con diferentes pares de proteínas del ribosoma.
Me uní al laboratorio cuando apenas se habían localizado con este método las primeras proteínas; me pasó la estafeta Dan Schindler, el alumno de posdoctorado cuyo lugar habría de ocupar. Descubrí, para mi sorpresa, que los haces de neutrones, incluso los de un reactor nuclear, son algunos órdenes de magnitud más débiles que los rayos X, así que se necesitaban varios días para medir la pequeña señal de las proteínas deuteradas enterrada en la dispersión de fondo procedente del resto del ribosoma. Dedicar el verano a este trabajo tenía sus ventajas: a veces, mientras se procesaban los datos, iba a la playa de Fire Island, a unos kilómetros hacia el sur. Estar atrapado en Brookhaven no resultaba muy divertido el resto del tiempo, porque el laboratorio se encontraba en un viejo campamento militar en medio de la nada, a las afueras de Yaphank. Los científicos que trabajaban ahí vivían en comunidades a unos kilómetros de distancia, que eran una mezcla de caseríos rurales y extensos desarrollos urbanos. A diferencia de una ciudad universitaria, con una rica oferta cultural y una vibrante vida nocturna, el laboratorio estaba desierto por las tardes y los fines de semana, y no había nada que hacer para un visitante temporal. Esta situación me recordaba una famosa caricatura de The New Yorker de la autopista de Long Island que decía “Salida 66: Yaphank. Si ya ha estado en Yaphank, por favor ignore esta salida”.
Tardamos unos tres años en localizar un poco más de la mitad de las proteínas de la subunidad menor y escribimos un par de artículos sobre su ubicación. Me preguntaba cuánto tiempo me tomaría encontrar el resto, pero, al acercarse el fin de mi beca, Don habló conmigo y me dijo que ahora que ya tenía la formación que necesitaba me vendría bien pasar a la siguiente etapa de mi carrera. El proyecto lo concluyó mi sucesor, Malcolm Capel. El artículo final, que describía la ubicación de todas las proteínas, las mostraba como bolas de billar superpuestas en el contorno de la subunidad menor y yo bromeaba diciendo que cerca de una tercera parte de esas bolas eran mías.
En respuesta a la indirecta de Don, presenté solicitudes a casi 50 plazas de profesor, pero no era buen momento para buscar empleo. Apenas comenzaba la era Reagan de la miniaturización del gobierno y el financiamiento para la investigación era limitado. La biotecnología estaba en pañales y los puestos de profesor escaseaban.
Me presenté a tantas convocatorias como pude en universidades de todos los niveles. Al leer mi nombre indio, a las universidades pequeñas probablemente les preocupaba que no pudiera hablar inglés lo suficientemente bien como para dar clases. Las universidades más grandes analizaban mi carrera: una licenciatura y un doctorado en física, ninguna por una universidad de prestigio, dos años estudiando biología pero sin título y luego investigación usando una técnica de la que nadie había oído hablar sobre un problema pasado de moda. No me extraña que no me hayan concedida una sola entrevista.
Por suerte, el Oak Ridge National Lab en Tennessee acababa de abrir un centro de dispersión de neutrones y estaba buscando alguien que trabajara con biólogos, así que Don llamó al director del centro, Wally Koehler, para recomendarme. Emocionados y llenos de optimismo por mi primer trabajo “de verdad”, Vera y yo de inmediato compramos una casa ahí. En febrero de 1982 empacamos todo en nuestro pequeño Ford Fiesta y manejamos de New Haven a Tennessee, con todo y una tormenta de hielo en Pensilvania
Iba convencido de que podría hacer mi propia investigación, pero resultó que el laboratorio de biología que me habían prometido no existía. Cuando me quejé, Wally Koehler me dijo que estaba allí para colaborar con los biólogos en la dispersión de neutrones, no para hacer mi propio trabajo. Koehler era un físico muy conocido, pero que obviamente no sabía cómo se trabaja en biología y lo periférico del trabajo con neutrones en esa rama de la ciencia, así que poco después de mi llegada empecé a buscar trabajo en otro lado. Por suerte, Benno Schoenborn, que estaba trabajando en el uso biológico de los neutrones en el Brookhaven National Lab y quien inspiró a Peter y a Don para colaborar en el problema del ribosoma, vino al rescate. Me ofreció un trabajo independiente en Brookhaven que, dada mi situación en Oak Ridge, acepté agradecido. Así, a apenas 15 meses de mi llegada a Oak Ridge, vendimos nuestra casa por mucho menos de lo que nos había costado y en el verano de 1983 nos mudamos de nuevo a la costa este, esta vez a Long Island.
A Vera no le hacía mucha gracia dejar su hermoso jardín y su vida idílica en Oak Ridge y se le fue el alma a los pies cuando cruzamos el puente George Washington y pudimos ver el tráfico de la autopista a Long Island. Terminamos por encontrar una casa en East Patchogue, junto al pueblo de Bellport, en la costa sur de Long Island. Era un trayecto de 20 kilómetros hasta el laboratorio y se sentía aún más largo durante las tormentas invernales.
A diferencia de mi desastrosa experiencia en Oak Ridge, en Brookhaven me dieron un laboratorio bien equipado, un técnico y libertad para emprender mi propia investigación. Mis colegas eran muy amables y serviciales, pero me dejaron claro que no debía esperar una titularidad por el simple hecho de continuar mi trabajo de posdoctorado. Por suerte, como resultado de algunas colaboraciones durante mi breve estancia en Oak Ridge, me había interesado en la cromatina, el conjunto de ADN y las proteínas llamadas histonas que conforma los cromosomas de las células. Así que comencé a estudiar cómo estaba organizada la cromatina y durante mucho tiempo me conocieron más por este trabajo que por el que continuaba haciendo sobre el ribosoma.
Seguía empeñado en estudiar el ribosoma usando las técnicas que había aprendido, como la dispersión de neutrones, pero ni yo ni nadie en el área entendía todavía cómo funcionaba en realidad. Sus componentes individuales parecían no hacer gran cosa por sí mismos. Era un poco como observar un grupo de llantas y de pistones aislados sin tener idea de cómo se ensamblan para formar un automóvil. Por el otro lado, el ribosoma completo daba la impresión de ser un problema demasiado grande e inabordable como para avanzar en forma significativa. El ribosoma no sólo estaba menos de moda que cuando me había ocupado de él por primera vez, sino que la dispersión de neutrones había demostrado ser un callejón sin salida para estudiarlo a él o a la cromatina. A casi una década de mi salto de la física a la biología, daba la impresión de que mi segunda carrera, como la primera, se iba por un tubo.