Читать книгу Физика элементарных частиц материи - Владимир Голощапов - Страница 12

Материя
Элементарные частицы материи
История открытия «элементарных частиц»

Оглавление

Представление о том, что мир состоит из фундаментальных частиц, имеет долгую историю. Впервые мысль о существовании мельчайших невидимых частиц, из которых состоят все окружающие предметы, была высказана за 400 лет до нашей эры греческим философом Демокритом. Он назвал эти частицы атомами, то есть неделимыми частицами. Наука начала использовать представление об атомах только в начале XIX века, когда на этой основе удалось объяснить целый ряд химических явлений. В 30-е годы XIX века в теории электролиза, развитой М. Фарадеем, появилось понятие иона и было выполнено измерение элементарного заряда. Конец XIX века ознаменовался открытием явления радиоактивности (А. Беккерель, 1896 г), а также открытиями электронов (Дж. Томсон, 1897 г) и б-частиц (Э. Резерфорд, 1899 г). В 1905 году в физике возникло представление о квантах электромагнитного поля – фотонах (М. Планк А. Эйнштейн). В 1911 году было открыто атомное ядро (Э. Резерфорд) и окончательно было доказано, что атомы имеют сложное строение. В 1919 году Резерфорд в продуктах расщепления ядер атомов ряда элементов обнаружил протоны. В 1932 году Дж. Чедвик открыл нейтрон. Стало ясно, что ядра атомов, как и сами атомы, имеют сложное строение. Возникла протон-нейтронная теория строения ядер (Д. Иваненко и В. Гейзенберг). В том же 1932 году в космических лучах был открыт позитрон (К. Андерсон). Позитрон – положительно заряженная частица, имеющая ту же массу и тот же (по модулю) заряд, что и электрон. Существование позитрона было предсказано П. Дираком в 1928 году. В эти годы были обнаружены и исследованы взаимные превращения протонов и нейтронов и стало ясно, что эти частицы также не являются неизменными элементарными "кирпичиками" природы. В 1937 году в космических лучах были обнаружены частицы с массой в 207 электронных масс, названные мюонами (м-мезонами). Затем в 1947–1950 годах были открыты пионы (то есть р-мезоны), которые, по современным представлениям, осуществляют взаимодействие между нуклонами в ядре. В последующие годы число вновь открываемых частиц стало быстро расти. Этому способствовали исследования космических лучей, развитие ускорительной техники и изучение ядерных реакций. В настоящее время известно около 400 субъядерных частиц, которые принято называть элементарными. Подавляющее большинство этих частиц являются нестабильными. Исключение составляют лишь фотон, электрон, (позитрон), протон и нейтрино. Все остальные частицы через определенные промежутки времени испытывают самопроизвольные превращения в другие частицы. Нестабильные элементарные частицы сильно отличаются друг от друга по временам жизни. Наиболее долгоживущей частицей является нейтрон. Время жизни нейтрона порядка 15 мин. Другие частицы "живут" гораздо меньшее время. Например, среднее время жизни м-мезона равно 2,2·10-6 с, нейтрального р-мезона – 0,87·10-16 с. Многие массивные частицы – гипероны имеют среднее время жизни порядка 10-10 с. Существует несколько десятков частиц со временем жизни, превосходящим 10-17 с. По масштабам микромира это значительное время. Такие частицы называют относительно стабильными. Большинство короткоживущих элементарных частиц имеют времена жизни порядка 10-22-10-23с. Способность к взаимным превращениям – это наиболее важное свойство всех элементарных частиц. Элементарные частицы способны рождаться и уничтожаться (испускаться и поглощаться). Это относится также и к стабильным частицам с той только разницей, что превращения стабильных частиц происходят не самопроизвольно, а при взаимодействии с другими частицами. Примером может служить аннигиляция (то есть исчезновение) электрона и позитрона, сопровождающаяся рождением фотонов большой энергии. Может протекать и обратный процесс – рождение электронно-позитронной пары, например, при столкновении фотонов достаточно большой энергией с ядром атома, с протоном или с другим, солидным для фотона препятствием. Такой опасный двойник, каким для электрона является позитрон, есть и у протона. Он называется антипротоном. Электрический заряд антипротона отрицателен. В настоящее время античастицы найдены у всех частиц. Античастицы противопоставляются частицам потому, что при встрече любой частицы со своей античастицей происходит их аннигиляция, то есть, обе частицы исчезают, превращаясь в кванты излучения. Я замечу, что это происходит не всегда. Для аннигиляции необходимо создать определённые условия. Ведь не аннигилируют в протоне электроны и позитроны?! Не аннигилируют. Они прекрасно совмещаются, создав при этом самую устойчивую крупную частицу – протон. Античастица обнаружена даже у нейтрона. Нейтрон и антинейтрон отличаются только знаками магнитного момента и так называемого барионного заряда.

Открытие странных частиц

Конец 40-х – начало 50-х гг. ХХвека ознаменовались открытием большой группы частиц с необычными свойствами, получивших название “странных". Первые частицы этой группы К+ – и К- мезоны, L-, S+ —, S-, X- гипероны были открыты в космических лучах, последующие открытия странных частиц были сделаны на ускорителях – установках, создающих интенсивные потоки быстрых протонов и электронов. При столкновении с веществом ускоренные протоны и электроны рождают новые элементарные частицы, которые и становятся предметом изучения.

В 1947 г. Батлер и Рочестер в камере Вильсона наблюдали две частицы, названные V-частицами. Наблюдалось два трека, как бы образующие латинскую букву V. Образование двух треков свидетельствовало о том, что частицы нестабильны и распадаются на другие, более лёгкие. Одна из V-частиц была нейтральной и распадалась на две заряженные частицы с противоположными зарядами. (Позже она была отождествлена с нейтральным К-мезоном, который распадается на положительный и отрицательный пионы). Другая была заряженной и распадалась на заряженную частицу с меньшей массой и нейтральную частицу. (Позже она была отождествлена с заряженным К+-мезоном, который распадается на заряженный и нейтральный пионы). V-частицы допускают, на первый взгляд, и другую интерпретацию: их появление можно было бы истолковать не как распад частиц, а как процесс рассеяния. Действительно, процессы рассеяния заряженной частицы на ядре с образованием в конечном состоянии одной заряженной частицы, а также неупругого рассеяния нейтральной частицы на ядре с образованием двух заряженных частиц будут выглядеть в камере Вильсона так же, как и распад V-частиц. Но такая возможность легко исключалась на том основании, что процессы рассеивания более вероятны в более плотных средах. А V-события наблюдались не в свинце, который присутствовал в камере Вильсона, а непосредственно в самой камере, которая заполнена газом с меньшей плотностью (по сравнению с плотностью свинца). Заметим, что если экспериментальное открытие р-мезона было в каком-то смысле "ожидаемым" в связи с необходимостью объяснить природу нуклонных взаимодействий, то открытие V-частиц, как и открытие мюона, оказалось полной неожиданностью. Открытие V-частиц и определение их самых "элементарных" характеристик растянулось более чем на десятилетие. После первого наблюдения этих частиц в 1947 г. Рочестер и Батлер продолжали свои опыты ещё два года, но им не удалось наблюдать ни одной частицы. И только после того как аппаратуру подняли высоко в горы, были снова обнаружены V-частицы, а также и открыты новые частицы. Как выяснилось позднее, все эти наблюдения оказались наблюдениями различных распадов одной и той же частицы – К-мезона (заряженного или нейтрального). "Поведение" V-частиц при рождении и последующем распаде привело к тому, что их стали называть странными. Странные частицы в лаборатории впервые получены в 1954 г. Фаулером, Шаттом, Торндайком и Вайтмором, которые, используя пучок ионов от Брукхейвенского космотрона с начальной энергией 1,5 ГэВ, наблюдали реакции ассоциативного образования странных частиц. С начала 50-х гг. ускорители превратились в основной инструмент для исследования элементарных частиц. В 70-х гг. энергии частиц, разогнанных на ускорителях, составили десятки и сотни млрд. электрон-вольт (ГэВ). Стремление к увеличению энергий частиц обусловлено тем, что высокие энергии открывают возможность изучения строения материи на тем меньших расстояниях, чем выше энергия сталкивающихся частиц. Ускорители существенно увеличили темп получения новых данных и в короткий срок расширили и обогатили наше знание свойств микромира. Применение ускорителей для изучения странных частиц позволило более детально изучить их свойства, в частности особенности их распада, и вскоре привело к важному открытию: выяснению возможности изменения характеристик некоторых микропроцессов при операции зеркального отражения – т. н. нарушению пространств, чётности (1956). Ввод в строй протонных ускорителей с энергиями в миллиарды электрон-вольт позволил открыть тяжёлые античастицы: антипротон (1955), антинейтрон (1956), антисигма-гипероны (1960). В 1964 был открыт самый тяжёлый гиперон W- (с массой около двух масс протона).

Резонансы

В 1960-х гг. на ускорителях было открыто большое число крайне неустойчивых (по сравнению с др. нестабильными элементарными частицами) частиц, получивших название “резонансов". Массы большинства резонансов превышают массу протона. Первый из них D1 (1232) был известен с 1953 г. Оказалось, что резонансы составляют основная часть элементарных частиц. Сильное взаимодействие р-мезона и нуклона в состоянии с полным изотопическим спином 3/2 и моментом 3/2 приводит к появлению у нуклона возбуждённого состояния. Это состояние в течение очень короткого времени (порядка 10-23с) распадается на нуклон и р-мезон. Поскольку это состояние имеет вполне определённые квантовые числа, как и стабильные элементарные частицы, естественно было назвать его частицей. Чтобы подчеркнуть очень малое время жизни этого состояния, его и подобные короткоживущие состояния стали называть резонансными. Нуклонный резонанс, открытый Ферми в 1952 г., позже стали называть Д3/2 3/2 – изобарой (чтобы выделить тот факт, что спин и изотопический спин Д-изобары равны 3/2). Так как время жизни резонансов незначительна, их нельзя наблюдать непосредственно, аналогично тому, как наблюдают "обычные" протон, р-мезоны и мюоны (по их следам в трековых приборах). Резонансы обнаруживают по характерному поведению сечений рассеивания частиц, а также изучая свойства продуктов их распада. Большинство известных элементарных частиц относится именно к группе резонансов. Открытие Д-резонанса имело важнейшее значение для физики элементарных частиц. Заметим, что возбуждённые состояния или резонансы не являются абсолютно новыми объектами физики. Ранее они были известны в атомной и ядерной физике, где их существование связано с составной природой атома (образованного из ядра и электронов) и ядра (образованного из протонов и нейтронов). Что касается свойств атомных состояний, то они определяются только электромагнитным взаимодействием. Малые вероятности их распада связаны с малостью константы электромагнитного взаимодействия. Возбуждённые состояния существуют не только у нуклона (в этом случае говорят о его изобарных состояниях), но и у р-мезона (в этом случае говорят о мезонных резонансах). "Причина появления резонансов в сильных взаимодействиях непонятна – пишет Фейнман, – сначала теоретики и не предполагали, что в теории поля с большой константой взаимодействия существуют резонансы. Позднее они осознали, что если константа взаимодействия достаточно велика, то возникают изобарные состояния. Однако истинное значение факта существования резонансов для фундаментальной теории остаётся неясной".

Физика элементарных частиц материи

Подняться наверх