Читать книгу О границах науки - Владимир Катасонов - Страница 5

I. Физика, математика и метафизика нашей цивилизации
1. Математика и физика в Античности

Оглавление

Математический язык современной физики, ставший для нас чем-то само собой разумеющимся, отнюдь не всегда был естественным языком природоведения. Мы знаем, что учения о природе в Античности говорили на другом языке: на языке качеств, а не количеств. Причина была принципиальной: в античном космосе вся подлунная сфера состояла из четырех элементов: земли, воды, воздуха и огня. Эти же элементы не могут воспроизводить точные геометрические формы, поэтому измерения в этой области тщетны: физика подлунной сферы не может быть математической. В надлунной же области все состоит из эфира (пятого элемента). Эфир по своей природе уже может точно воплощать геометрические фигуры (например, небесные сферы), поэтому и возможна математическая астрономия. Подлунная сфера не может точно воспроизводить геометрические формы потому, что все сущее есть соединение формы и материи (Аристотель), и последняя есть то бесформенное начало, которое отрицает всякую точность в материальных вещах. Еще решительнее эта точка зрения выражена у Платона. Вещи материального мира суть лишь отражения мира идей. Материя в них только отчасти подчинена форме, и именно поэтому невозможна математическая физика[1].

Однако попытки построения математической физики начались еще раньше, чем были построены космологии Аристотеля и Платона. Традиция приписывает пифагорейцам фундаментальный принцип «Все есть число». Хотя историки философии и по сегодняшний день спорят об истинном значении этого тезиса – значит ли он, что все есть число в онтологическом смысле, или же смысл его состоял в том, что все закономерности в природе могут быть выражены через число, в духе современной физики. Тем не менее сам факт этого внимания к роли математики в познании природы был отнюдь не случаен. Пифагорейцы создают математическую теорию музыки, на долгие века входящую в традиционный квадривиум наук. Они открыли, что благозвучие традиционных музыкальных интервалов – такое, казалось бы, субъективное и психологически неустойчивое – имеет под собой жесткую структуру числовых соотношений: октава (2:1), квинта (3:2), кварта (4:3).

Рассмотрение так называемых «фигурных чисел», например квадратов или треугольников, выложенных из камешков (точек), и обнаружение арифметических соотношений между последовательностями этих чисел наводило на мысль, что вероятно и геометрические фигуры также могут быть сведены к числам[2].

Но именно пифагорейцам традиция приписывает и открытие несоизмеримости отрезков – открытие, принципиально подорвавшее веру в то, что все в мире может быть измерено и выражено в целых числах. Оказалось, что если мы возьмем квадрат со стороной единица, то диагональ этого квадрата невыразима ни целым числом единиц, ни целой частью единицы. Надежды на рациональную «прозрачность» всего сущего рухнули: в мире вместе с соразмерностью и порядком существует и несоизмеримое, иррациональное. Это открытие было научно-философским выражением дуализма, давно опознанного традиционной народной религией: есть светлые божества, несущие в мир порядок и смысл (Аполлон), а есть другие, выражающие темную, стихийную природу сущего (Дионис)[3]. Этот дуализм прочно вошел в традицию античной мысли и, несмотря на большие достижения античной математики и естествознания, всегда оказывал характерное влияние на развитие науки и философии.

С открытием несоизмеримости была связана еще одна принципиальная для истории науки тема бесконечности. Уже в классическом доказательстве несоизмеримости диагонали квадрата и его стороны обнаруживалось, что процесс нахождения общей меры[4] шел в бесконечность. Греки настороженно относились к бесконечности: весь человеческий опыт конечен, бесконечность невозможно представить, греческие боги и те конечны по своему могуществу. Более того, бесконечность немыслима, так как при этом нарушаются фундаментальные аксиомы науки. Одной из таких аксиом была следующая: часть меньше целого[5]. Но для бесконечности эта аксиома нарушается. Если взять, например, натуральный ряд чисел, то между всеми числами и только четными числами можно установить взаимно-однозначное соответствие по формуле: n ↔ 2n. Четных чисел оказывается столько же, сколько и всех, часть равна целому. Поэтому греки отказались от использования бесконечности в науке. Точнее, они выделили понятия потенциальной бесконечности – бесконечности как процесса (возрастание чисел натурального ряда или неограниченное деление отрезка и его частей), и актуальной бесконечности (все натуральные числа, взятые как единое множество, или отрезок, разделенный «до конца»). Потенциальная бесконечность допускается в науке как метод, как прием. Актуальной же бесконечности отказано в праве существования в науке: «бесконечности нет ни в космосе, ни в уме» (Аристотель)[6].

1

Хотя парадоксом остается то, что именно Платон дал в «Тимее» одну из первых попыток построения математической физики.

2

Например: (n + I)²– n² = 2n + 1 – «разность квадратных чисел равна нечетному числу».

3

См. об этом интересную книгу: Доддс Е. Р. Греки и иррациональное. М., 2000. Особенно гл. 3 «Блага исступленности».

4

Так называемый «алгоритм Евклида».

5

Например, в «Началах Евклида».

6

Подробнее см. в моей книге: Катасонов В. Н. Боровшийся с бесконечным. Философско-религиозные аспекты генезиса теории множеств Г. Кантора. М., 1999.

О границах науки

Подняться наверх