Читать книгу Законы развития систем. ТРИЗ - Владимир Петров - Страница 12

1. История законов развития технических систем
1.5. Работы по законам развития техники в ТРИЗ

Оглавление

1.5.1. Законы развития технических систем, сформулированные Г. С. Альтшуллером

Первая система законов развития техники в ТРИЗ была разработана ее автором Г. С. Альтшуллером в 1956 году. Первоначально она выглядела так114.

– Отдельные элементы машины, механизма, процесса всегда находятся в тесной взаимосвязи.

– Развитие происходит неравномерно: одни элементы обгоняют в своем развитии другие, отстающие.

– Планомерное развитие системы (машины, механизма, процесса) оказывается возможным до тех пор, пока не возникнут и не обострятся противоречия между более совершенными элементами системы и отстающими ее частями.

– Это противоречие является тормозом общего развития всей системы. Устранение возникшего противоречия и есть изобретение.

– Коренное изменение одной части системы вызывает необходимость для функционально обусловленных изменений в других ее частях.

Кроме того, в этой работе, практически был сформулирован закон полноты частей системы. «Между главными составными частями машины – рабочим органом, передаточным механизмом (трансмиссией) и двигателем – имеется определенное соотношение, ибо все эти части находятся в тесной взаимосвязи и взаимообусловленности. Наличие взаимосвязи между главными составными частями машины приводит к тому, что развитие той или иной части оказывается возможным только до определенного предела – пока не возникнут противоречия между измененной частью машины и оставшимися без изменений другими ее частями». И далее: «Противоречия, возникающие между отдельными частями машины, являются тормозом общего развития, ибо дальнейшее усовершенствование машины невозможно без внесения изменений в соответствующие ее части, без коренного улучшения их свойств».


В следующих работах Г. Альтшуллер описывает отдельные законы. Например, закон увеличения степени идеальности дан в виде понятия идеального конечного результата и следующей формулировки: «Максимум нового эффекта при минимуме затрат на реализацию»115.


В 1963 г. Г. Альтшуллер сформулировал следующие тенденции развития техники116:

– Увеличение параметров каждого единичного агрегата. Например, увеличение скорости самолета или грузоподъемности автомобиля.

– Увеличение удельных характеристик машин и процессов.

– Интенсификация производственных процессов (например, совмещение во времени нескольких этапов)

– «Динамизация» машин: машины с фиксированными характеристиками (вес, объем, форма и т. д.) вытесняются меняющимися в процессе работы машинами; «жесткие» конструкции вытесняются «гибкими». Это заметная тенденция в развитии современной техники – разделение машины на несколько гибко сочлененных секций.

В этой же работе описывается понятие «идеальная машина»117:

«Идеальная машина»  абстрактный эталон, в реальных условиях недостигаемый и отличающийся следующими обстоятельствами:

– Все части идеальной машины все время несут полезную расчетную нагрузку.

– Материал «идеальной машины» работает так, что его свойства используются наилучшим образом, например, металлические части работают только на растяжение, деревянные части – только на сжатие и т. д.

– Для каждой части «идеальной машины» созданы наиболее благоприятные внешние условия (температура, давление, характер движения внешней среды и т. д.).

– Если «идеальная машина» передвигается, то вес, объем и площадь полезного груза совпадают или почти совпадают с весом, объемом и площадью самой машины.

– «Идеальная машина» способна менять назначение (в пределах своей основной функции).

– Межремонтный период частей равен сроку службы всей «идеальной машины».

Сравнивая «идеальную машину» с идеей изобретения, можно судить об уровне, вообще достигнутом в данной отрасли техники, и о качестве найденной идеи.


В середине 70-х годов Г. Альтшуллер разработал другую систему законов, которая была описана в двух работах «Линии жизни» технических систем и «О законах развития технических систем», которые были распространены в школах ТРИЗ118. В дальнейшем они были опубликована в книге «Творчество как точная наука»119 и сборнике Дерзкие формулы творчества120. Законы были разбиты на три группы: статика, кинематика и динамика. Приведем эти законы.

Статика

1. Закон полноты частей системы

Необходимым условием принципиальной жизнеспособности технической системы являются наличие и минимальная работоспособность основных частей системы.

Каждая техническая система должна включать четыре основные части: двигатель, трансмиссию, рабочий орган и орган управления121.

Следствие из закона 1:

Чтобы система была управляемой, необходимо, чтобы хотя бы одна ее часть была управляемой.


2. Закон «энергетической проводимости» системы

Необходимым условием принципиальной жизнеспособности технической системы является сквозной проход энергии по всем частям системы.

Следствие из закона 2:

Чтобы часть технической системы была управляемой, необходимо обеспечить энергетическую проводимость между этой частью и органами управления.


3. Закон согласования ритмики частей системы

Необходимым условием принципиальной жизнеспособности технической системы является согласование ритмики (частоты колебаний, периодичности) всех частей системы.

Кинематика

4. Закон увеличения степени идеальности системы

Развитие всех систем идет в направлении увеличения степени идеальности.


5. Закон неравномерности развития частей системы

Развитие частей системы идет неравномерно; чем сложнее система, тем неравномернее развитие ее частей.


6. Закон перехода в надсистему

Исчерпав возможности развития, система включается в надсистему в качестве одной из частей; при этом дальнейшее развитие идет уже на уровне надсистемы.

Динамика

7. Закон перехода с макроуровня на микроуровень

Развитие рабочих органов системы идет сначала на макро-, а затем на микроуровне.


8. Закон увеличения степени вепольности

Развитие технических систем идет в направлении увеличения степени вепольности.122


Позже Г. Альтшуллер ввел закон увеличения степени динамичности, уточнил понятия законов перехода в надсистему и увеличения степени вепольности123, разработал линию увеличения пустотности124.


Закон увеличения степени динамичности Альтшуллер описал так:

«… для каждой системы неизбежен этап „динамизации“ – переход от жесткой, не меняющейся структуры к структуре гибкой, поддающейся управляемому изменению. … „Зрелые“ и „пожилые“ системы тоже динамизируются, что компенсирует увеличение их размеров». … «Вводят шарниры и упругие элементы, применяют пневмо- и гидроконструкции, используют вибрацию, фазовые переходы… Выбор способа динамизации зависит от конкретных обстоятельств, но сама динамизация – универсальный закон, определяющий направление развития всех технических систем, даже таких, которые по самой своей природе, казалось бы, должны оставаться жесткими»125. Практически это развитие тенденции, высказанной Г. Альтшуллером в 1963 г.


Механизмы закона перехода в надсистему126 Генрих Альтшуллер представил в виде перехода МОНО-БИ-ПОЛИ-СВЕРТЫВАНИЕ.

1. Эффективность синтезированных би-систем и поли-систем может быть повышена прежде всего развитием связей элементов в этих системах.

2. Эффективность би- и поли-систем может быть повышена увеличением различия между элементами системы: от однородных элементов к элементам со сдвинутыми характеристиками, а затем – к разнородным элементам и инверсным сочетаниям типа «элемент и анти-элемент».


Закон увеличения степени вепольности был представлен в виде «линия развития вепольных систем: от невеполей к простым веполям, затем к сложным веполям и далее к веполям, форсированным и комплексно форсированным»127.


Линия увеличения пустотности будут описана ниже (см. п. 7.5).


Линия перехода к капиллярно-пористому веществу была изложена в стандарте 2.2.3. Этот переход этот осуществляется по линии: «сплошное вещество – сплошное вещество с одной полостью – сплошное вещество со многими полостями (перфорированное вещество) – капиллярно-пористое вещество – капиллярно-пористое вещество с определенной структурой (и размерами) пор». По мере развития этой линии увеличивается возможность размещения в полостях-порах жидкого вещества и использования физических эффектов.

1.5.2. Законы развития технических систем, сформулированные другими авторами

Законы формулировались и усовершенствовались и другими авторами. Отметим некоторые из работ.

– Закон увеличения степени идеальности: В. Петров128, Ю. Саламатов и И. Кондраков129, Э. Каган130, В. Фей131, В. Митрофанов132, Г. Иванов133, А. Любомирский134.


– Закон увеличения степени динамичности – И. Кондраков135.

Подзаконы динамичности:

а) увеличения пустотности — Г. Альтшуллер и И. Верткин136;

б) увеличение степени дробления – В. Петров137;

в) цепочка развития капиллярно-пористых материалов (КПМ)

Г. Альтшуллер138, И. Рябкин139, Ю. Саламатов140, В. Петров141.


– Закон сквозного прохода энергии – Г. Иванов142.


– Закон согласования технических систем разрабатывали: С. Литвин143, Б. Злотин и А. Зусман144, В. Петров и Э. Злотина145.


– Модификацию закона перехода в надсистему осуществили:

С. Литвин и В. Герасимов146, Г. Френклах и Г. Езерский147, А. Пиняев148.


– Закон увеличения степени вепольности – В. Петров149.


– Закон идеальности механизмов свертывания: С. Литвин и

В. Герасимов150, В. Дубров151.


– Закономерность точка – линия – объем В. Петров152, А. Любомирский153.


– Системный анализ, системные исследования, теория систем – В. Петров154, А. А. Быстрицкий155.


– Использование законов при проведении ФСА – С. Литвин и

В. Герасимов156.


С 1965 г. В. Петров изучал и использовал на практике теорию автоматического управления и кибернетику, а с 1968 г. – теорию систем, системные исследования, системный анализ и системный подход. Исследования в основном проводились с целью создания новых систем автоматического управления и контроля для различных объектов157.

Исследования развития техники автор начал в 1972 г. с анализа работ в этой области158.

Указанные и другие работы послужили фундаментом для разработки законов развития технических систем. Эти исследования автор ведет с 1973 года. Первоначально была сделана попытка перенести законы диалектики (единство и борьбы противоположностей, перехода количественных изменений в качественные и отрицания отрицания)159 на развитие техники.

В 1973 году по аналогии с приемами разрешения технических противоречий, разработанных Г. С. Альтшуллером160, автор решил разработать несколько тенденций: дробление (прием 1. Принцип дробление), управление весом (прием 8. Принцип антивеса) и переход от точки к линии, плоскости и объему (прием 17. Принцип перехода в другое измерение и прием 7. Принцип «Матрешки»). Эти работы обсуждались с Г. Альтшуллером.

Первоначально тенденцию дробления автор описал как переход от монолитного твердого объекта к гибкому, затем к раздробленному объекту вплоть до порошка, далее к гелю, жидкости, газу и к полю161.

Цепочку управления весом (позже автор назвал ее «гравиполи») первоначально автор представил в виде: использование силы Архимеда в газе и жидкости, крыло и набегающий поток, магнитное и электрическое поля162.

Переход от точки к линии, плоскости и объему первоначально автор описал так: переход от точки к линии в плоскости, линии в пространстве, плоскости, использование обратной стороны плоскости, лента Мебиуса, переход к объему, использование внутреннего объема (принцип матрешки)163.

В этот период наиболее сильные теоретические работы по законам развития технических систем, кроме Г. Альтшуллера, были сделаны Б. Голдовским164, который рассмотрел понятия и механизмы по узловому компоненту, противоречиям и оператору отрицания и ввел понятие главной полезной функции системы (ГПФ).

Одной из первых разработок В. Петрова в ТРИЗ была цепочка дробления165, которая описывала постепенный переход (замену) исполнительного органа (теперь он называется рабочим органом) от монолитного твердого вещества к гибкому (эластичному) объекту, к разделению объекта на отдельные части, связанные между собой связями, которые меняются от жестких к гибким и исчезают совсем, не связанные части или связанные с помощью какого-либо поля, например, магнитного, части постепенно измельчаются, превращаясь в мелкодисперсный порошок – порошкообразный объект, постепенно переходя к гелю – пастообразному веществу, затем изменяется степень вязкости вещества до получения жидкости, далее изменяется степень связанности жидкости, используя более легкие и летучие жидкости и аэрозоли, содержание газа в аэрозоле увеличивается, и таким образом происходит переход к газу, постепенно используя все более легкий газ и изменяя степень разряжения вплоть до образования вакуума, вакуум делают все более глубоким, последний переход к полю, в частности используется плазма. Эта цепочка совершенствовалась и к середине 70-х она имела вид, используемый автором и сегодня166. В начале 80-х к этой цепочке автор присоединил цепочку капиллярно-пористых материалов.


В 1979 г. Б. Злотин написал работу «анализ процессов»167, где он описал закономерности развития процессов и механизмы его исполнения.


Детальнее опишем историю формулировки закона согласования.

Впервые закон согласования был сформулирован Г. Альтшуллером в начале 70-х годов в виде закона согласования ритмики частей системы168. Этот закон является частным случаем закона согласования, который был сформулирован позже.

Наибольший вклад в развитие этого закона (насколько это известно автору) внесли представители Ленинградской школы ТРИЗ. Основные идеи этого закона были предложены Б. Злотиным, Э. Злотиной, С. Литвиным и В. Петровым в 1975—1980 гг. Этот закон и многие другие направления ТРИЗ неоднократно обсуждались в этом коллективе. Были выработаны общие подходы, например, что понятие этого закона должно быть значительно расширено, но, тем не менее, каждый имел и свой взгляд на этот закон.

Например, понятие «согласование-рассогласование» предложила Э. Злотина. Первоначально эта закономерность разрабатывалась совместно Б. Злотиным и Э. Злотиной, а в дальнейшем Б. Злотиным и А. Зусман.


С. Литвин рассматривал четыре вида согласования169.

1. Компонентное согласование материалов, веществ.

2. Структурное – согласование размеров, форм, структуры.

3. Параметрическое – согласование основных параметров технических систем: температур, весов, давлений, плотностей, электрических сопротивлений и т. д.

4. Функциональное – согласование основных функций.

Кроме того, С. Литвин рассматривает:

1. Согласование подсистем одной ТС.

2. Согласование ТС и внешней среды.

3. Согласование изделия и инструмента.

4. Согласование инструментов между собой.

5. Согласование изделий между собой.


Б. Злотин рассматривает различные виды согласования-рассогласования170 (разбивка по пунктам и группировка осуществлена В. Петровым).

1. Согласование—рассогласование параметров.

1.1. Прямое и обратное.

1.2. Однородное и неоднородное.

1.3. Внутреннее и внешнее.

2. Согласование—рассогласование систем:

2.1. Непосредственное.

2.2. Условное.

3. Согласование—рассогласование материалов.

4. Согласование—рассогласование форм и размеров.

5. Согласование—рассогласование ритмики работы.

6. Согласование—рассогласование структуры.

7. Согласование—рассогласование потоков в системах.

8. Согласование—рассогласование живучести системы.


Кроме того, Б. Злотин рассматривает линии развития ТС по согласованию-рассогласованию:

1. Несогласованная система Согласованная система Рассогласованная система Система с динамическим согласованием-рассогласованием.

2. Виды согласования:

Несогласованная система Система с принудительным согласованием Система с буферным согласованием Система со свернутым согласованием.

3. Согласование ритмики рабочих движений при обработке:

Несовместимость транспортного и технологического движений Совместимость транспортного и технологического движений с согласованием скоростей Совместимость транспортного и технологического движений с рассогласованием скоростей Независимость технологии от транспортного движения.


Закон согласования, сформулированный В. Петровым в 1975—1978171, имеет следующую структуру:

1. Согласование может быть:

1.1. Статическое.

1.2. Динамическое.

– Согласование проводится по уровням:

2.1. Потребностей.

2.2. Функций.

2.3. Систем.

– Виды согласования:

3.1. Во времени.

3.2. В пространстве.

3.3. В структуре.

3.4. По условиям.

3.5. Параметров.


К согласованию во времени, в частности относится согласование процессов и потоков.

Согласование потребностей может проводиться:

– по самим потребностям (согласование потребностей между собой);

– по параметрам;

– по структуре;

– по условиям;

– в пространстве;

– во времени.

В частности, может быть динамическое согласование.

Под согласованием потребностей понимается и их специальное рассогласование (максимальное увеличение разницы между потребностями).

Согласование функций может осуществляться:

– во времени;

– в пространстве;

– по условиям.

В частности, может быть динамическое согласование.

На уровне систем согласование проводится между:

– системами;

– подсистемами;

– надсистемами;

– подсистемами с системой и надсистемой;

– системы с надсистемой и внешней средой;

– обратное согласование или рассогласование надсистемы и окружающей среды с системой и подсистемами.

При согласовании систем, прежде всего, необходимо согласовать ее структуру. К структуре, в частности, относятся форма, расположение отдельных элементов и их взаимодействие.

Структура системы определяется элементами и связями. Они могут быть:

– вещественные;

– энергетические;

– информационные.

Системные понятия структуры, ее элементов и связей, и их видов (вещество, энергия, информация) относятся так же к подсистемам, надсистеме и внешней среде.

Параметры могут быть:

– технические;

– эргономические;

– экономические;

– экологические;

– эстетические;

– социальные;

– политические и т. д.

К техническим параметрам относятся не только сугубо технические, но и физические, химические, математические, параметры надежности, т. е. все параметры, относящиеся к работоспособности системы. В частности, в качестве технических параметров могут рассматриваться частоты и ритмика. Таким образом, согласование ритмики частей системы относится к одному из видов параметрического согласования.

В общем случае согласование проводится по всем указанным выше структурным направлениям. Оно представляет собой комбинацию этих структурных направлений и поднаправлений закона согласования.

Согласование должно осуществляться по сложной морфологической структуре, в виде морфологической матрицы с подматрицами. Своего рода сочетание древовидного графа структуры и перебора всех вариантов на каждом из уровней графа в виде морфологической матрицы.


Разработкой системы законов, по нашим данным, занимались

Б. Злотин и А. Зусман172, Ю. Саламатов173, В. Петров и Э. Злотина174, С. Литвин и А. Любомирский, Г. Иванов175, А. Захаров176, И. Девойно177 и М. Рубин178.


Опишем наиболее полные и существенные, на наш взгляд, системы.


Система законов Б. Злотина и А. Зусман179 содержала новые законы, например, «развертывание-свертывание», «согласование-рассогласование», «увеличение использования ресурсов», и механизмы выполнения каждого из законов (линии развития технических систем – всего 22 линии)180.

1. Эволюция ТС.

Создание системы 1 этап развития 2 этап развития 3 этап развития создание новой системы.

2. Вытеснение человека из ТС.

Исходная система вытеснение человека как индивида, при сохранении принципа действия вытеснение человеческого принципа действия, замена его машинным.


Вытеснение на одном уровне

Исходная система вытеснение из исполнительных органов вытеснение из преобразователя вытеснение из источника.


Вытеснение между уровнями

Исходная система вытеснение с исполнительного уровня вытеснение с уровня управления вытеснение с информационного уровня.

3. Увеличение степени идеальности ТС.

Исходная система совершенствование в рамках существующей концепции переход к принципиально новой системе.

4. Развертывание-свертывание ТС.

Развертывание:

Создание функционального центра включение дополнительных подсистем: повышение уровня иерархии путем дробления или повышение уровня иерархии путем перехода к надсистеме переход к ретикулярной системе.


Свертывание

Минимальное свертывание частичное свертывание полное свертывание.

5. Повышение динамичности и управляемости ТС.

Переход к мультифункциональности:

Нединамическая система система со сменными рабочими органами система с программным принципом осуществления функций система с изменяемыми рабочими органами.


Увеличение числа степеней свободы

Нединамическая система система, изменяющаяся механически: шарниры, механизмы, гибкие материалы и т. п. система, изменяющаяся на микроуровне: фазовые переходы, хим. превращения и т. п. система с изменяющимися полями.


Повышение управляемости

Неуправляемая система система с принудительным управлением система с самоуправлением.


Изменение степени управляемости

Статическая система система с несколькими устойчивыми состояниями (мультиустойчивая) динамически устойчивая система неустойчивая система.

6. Переход на микроуровень и к использованию полей.

Переход на микроуровень:

Макроуровень подсистема из деталей обобщенной формы полисистема из высокодисперсных элементов система на надмолекулярном уровне система на молекулярном уровне (химия) система на атомном уровне система с использованием полей.

Переход к высокоэффективным полям:

Механические поля (М) → термомеханические (ТМ) → тепловое поле (Т) → термохимические (ТХ) → химические взаимодействия (Х) → электрохимические (ХЭ) → электрические поля (Э) → электромагнитные (ЭМ) → магнитные поля (М).

Повышение эффективности действия полям:

Поле постоянное поле обратного знака, сочетание противоположно направленных полей (±) переменное поле (резонанс, стоячие волны и т. п.) импульсное градиентное поле суммарное действие разных полей.

7. Согласование – рассогласование ТС.

Несогласованная система согласованная система рассогласованная система система с динамическим согласованием-рассогласованием.

Виды согласования

Несогласованная система система с принудительным согласованием система с буферным согласованием система со свернутым согласованием.


Согласование взаимодействия инструмента с изделием

Действие по точкам действие по линиям действие по поверхности действие по объему.


Согласование ритмики рабочих движений при обработке

Несовместимость транспортного и технологического движений совместимость транспортного и технологического движений с согласованием скоростей совместимость транспортного и технологического движений с рассогласованием скоростей независимость и технологии от транспортного движения.

8. Дробление ТС.

Сплошной объект объект с частичными внутренними перегородками объект с полыми перегородками объект с частичным отделением отсеков объект с конструкцией типа штанги объект с частичным, связанными полями объект со структурной связью объект с программной связью частей система с нулевой связью частей.

9. Переход на микроуровень и к использованию полей.

Топливо:

Макроуровень подсистема из деталей обобщенной формы полисистема из высокодисперсных элементов система на надмолекулярном уровне система на молекулярном уровне (химия) система на атомном уровне система с использованием полей.

Топливо

Природное топливо «облагороженное» природное топливо (кокс, бензин и т. п.) синтетическое топливо (порох, водород и т. п.).

Окислитель

Воздух воздушное дутье кислород озон другие окислители ионизированные окислители.


Управление сгоранием

Неуправляемое горение управление подачей горючего, окислителя непосредственное управление процессом горения (катализаторы, поля).

Позже Б. Злотиным и А. Зусман была разработана методика «Directed Evolution»181, предназначенная для разработки прогноза развития систем. Она состоит из 5 этапов: сбор исторических данных, диагностики путей развития, синтеза идей, принятия решения и поддержки процесса развития. В работе детально описывается технология проведения каждого из этапов. В ней имеются обширные приложения, где, в частности излагаются и законы развития систем. В 2006 г. они разработали концепцию и методы управления развитием искусственных систем182, включающие банк эволюционных альтернатив (Bank of Evolutionary Alternatives). Банк состоит из 5 групп: универсальное развитие, биологическое развитие, развитие человеческой цивилизации, развитие искусственных систем, микроразвитие (изобретения и инновации).


Первую систему законов В. Петров предложил в 1976 г. по результатам анализа законов развития биологии и переноса их в технику183. Структура законов включала три группы: жизнеспособность (законы организации), эффективность и эволюция построения новых систем. В этой работе были введены и определены законы избыточности и толерантности. В 1978 г. эта система была усовершенствована184. Среди законов эволюции был указан главный закон развития систем – закон увеличения степени идеальности, которому подчиняется общее развитие систем. Более детальная система была создана в 1979 г.185 В основу этих исследований положены законы развития технических систем, разработанные Г. Альтшуллером.

Полностью сформированная система законов была разработана к 1982 г., а опубликована в 1984 г.186. Механизмы закона увеличения степени идеальности были разработаны в 1982 г.187, а опубликованы в 1983 г.188

Данная классификация просуществовала до 1983 г.189 Менялось только содержание групп, количество законов, их формулировки и механизмы их исполнения.

Автор неоднократно обсуждал результаты исследований в Ленинградской школе ТРИЗ со своими коллегами и друзьями Волюславом Митрофановым, Борисом Злотиным, Эсфирь Злотиной, Семеном Литвиным, Игорем Викентьевым, Владимиром Герасимовым, Вадимом Канером и многими другими. Большую работу по анализу этих работ провел мой друг Борис Голдовский. Советы этих людей и их теоретические работы существенно повлияли на формирование взглядов автора на законы развития технических систем.

В 1984 г. автор изменил систему законов, разбив их на две группы: организации систем и их эволюции190. В этой работе излагалась также методика прогнозирования на основе законов развития технических систем и системного анализа. Она излагалась на примере развития судостроения и, в частности, подводных аппаратов. Методика рассматривала полный и экспресс-прогнозы. Экспресс прогноз проводился с помощью системы стандартов и законов развития технических систем. Полный прогноз предусматривал глубокие патентные исследования рассматриваемой области, смежных и ведущих областей и функциональное исследование патентов и технической литературы. Кроме того, определялись закономерности развития реально существовавших систем. В дальнейшем эта методика была уточнена и использована для прогнозирования развития сварки. Прогноз опирался на исследование 80 000 патентов191.

В 1986 г. автор начал разработку законов развития потребностей192 и функций193, что привело к качественно новому этапу в развитии системы законов, которая состояла из трех уровней: потребностей, функций и систем. Система прогнозирования так же включала эти три уровня. Разработка этой системы законов была завершена к 1987 г. и опубликована в 1989 г.194. Уточненная система законов развития технических систем была изложена в подготовленном учебнике195. Сегодняшнее представление В. Петрова заключается в том, что на только система законов должна иметь не только три указанные уровня законов, но и каждый закон должен содержать механизмы его применения и иметь тенденцию и антитенденцию их развития196. При прогнозировании развития системы необходимо учитывать экономические законы и тенденции развития маркетинга, а при продвижении системы на рынок необходимо дополнительно учитывать тенденции развития компании и рынка197.


К 1983 г. Б. Голдовским была разработана система закономерностей построения и развития ТС, включающая около 60 элементов, фрагменты которой были опубликованы в 1990 году.


В 1984 г. Ю. Саламатов совместно с И. Кондраковым опубликовали работу «Идеализация технических систем»198. Они предложили пространственно-временную модель эволюции технических систем (модель бегущая волна идеализации) на примере развития тепловой трубы. Модель показывала этапы развертывания и свертывания технических систем, используя конкретные законы. В дальнейшем система законов была усовершенствована199.


В работе С. Литвина и А. Любомирского была предложена иерархическая система законов, во главе которой был поставлен закон развития по S-образной кривой200.

Этому закону подчиняется закон повышения идеальности, а этому закону подчиняются законы:

– закон перехода в надсистему;

– закон повышения свернутости;

– закон повышения эффективности использования потоков;

– закон повышения согласованности;

– закон неравномерного развития частей технической системы;

– закон повышения полноты технической системы.

Закон повышения согласованности имеет подзакон – закон повышения управляемости, а этот закон имеет подзакон – закон повышения динамичности технических систем.

Закон повышения полноты технической системы имеет подзакон – закон вытеснения человека из технической системы.

В этой системе законы рассматриваются в зависимости от этапа развития технической системы в соответствии с S-образной кривой.


М. Рубин предложил систематизацию законов развития, состоящую из законов синтеза систем, законов развития систем и специальных законов развития, отражающих особенности данного типа систем: для технического вещества (техновещество), для функционирующих систем и для саморазвивающихся социально-технических систем201.

В 2011 г. М. Рубин предложил систему, содержащую следующие законы: закон повышения идеальности, закон перехода в надсистему, закон повышения полноты частей системы, закон неравномерного развития частей системы (противоречия), закон оптимизации потоков, закон повышения свернутости, закон вытеснения человека, закон повышения согласованности, закон повышения управляемости, закон повышения динамичности, развитие технических систем по S-образной кривой202.

Кроме того, Рубин приводит восемь линий развития:

1. Переход в надсистему и ее подсистемы (на микроуровень);

2. Линии коллективно-индивидуального использования систем;

3. Линия введения элементов (веществ);

4. Линия введения и развития полей взаимодействия;

5. Линия дробления и динамизации;

6. Линия согласования-рассогласования;

7. Линия развития систем в соответствии с S-образными кривыми;

8. Линии и тенденции развития программного обеспечения.


В 2015 г. М. Рубин предложил новую систему законов203.

1. Закон развития систем в направлении повышения уровня и эффективности захвата ресурсов.

2. Закон повышения системных связей и разнообразия полей взаимодействия и механизмов захвата в процессе эволюции систем.

3. Закон зависимости развития систем от доступных ресурсов.

4. Закон перехода от ресурсных к самоорганизующимся и к функциональным системам.

5. Закон перехода к формированию надсистемам (объединениям) и образованию или развитию подсистем.

6. Закон изменения внешней и внутренней среды системы при ее развитии;

7. Закон стремления к идеальным функциональным системам.

8. Закон сохранения структурной целостности и функциональной полноты систем.

9. Закон стремления систем к повышению степени их независимости от внешней среды.

10. Закон развития механизмов захвата от жестких к гибким, от постоянных к управляемым.

11. Закон развития через возникновение и разрешение противоречий требований.

12. Закон принципов разрешения противоречий при развитии систем в пространстве, во времени, системными переходами и в отношениях.


Велись работы по выявлению закономерностей развития нетехнических систем разными авторами:


– развитие научных систем – Г. Альтшуллер204, В. Митрофанов205, И. Кондраков206, В. Цуриков207, Г. Головченко208, Г. Иванов209, Б. Злотин и – А. Зусман210;


– развитие биологических систем описали – В. Петров211,

И. Захаров212, – В. Тимохов213;


– развитие окружающей среды (создание бесприродного технического мира – БТМ) – Г. Альтшуллер, М. Рубин214;


– развитие художественных систем – Ю. Мурашковский и

И. Мурашковска215, Р. Флореску216;


– развитие литературы (сказки) – А. Нестеренко217, (пословицы) С. Перницкий218, (анатомия сюжета) А. Молдавер219;


– развитие музыкальных форм – Э. Злотина220;


– развитие творческой личности – Г. Альтшуллер и И. Верткин221;


– развитие творческого коллектива – Б. Злотин, А. Зусман, Л. Каплан222;


– многоуровневневое непрерывное креативное образование – М. Зиновкана223;


– развитие педагогики – А. Нестеренко, В. Бухвалов224, А. Гин225;


– развитие фокусов – В. Л. Уральская и С. Литвин226;


– развитие журналистики227 и рекламы – И. Викентьев228;


– закономерности развития менеджмента и предвыборной борьбы – С. Фаер229;


– диалектика – В. Петров230, А. Лимаренко231.


Проблемами прогнозирования с использованием ТРИЗ занимались Г. Альтшуллер232, Б. Злотин и А. Зусман233, С. Литвин и

В. Герасимов, М. Рубин234, В. Петров и Э. Злотина235, И. Захаров236,

Н. Шпаковский237.


До настоящего времени, на наш взгляд, еще не сложилось единого представления о законах развития технических систем. Все эти работы описывают общие и различные моменты. Имеется несколько систем, описывающих законы развития технических систем. Наиболее удачные из них, на наш взгляд – это системы Г. Альтшуллера,

Б. Злотина и А. Зусман, С. Литвина и А. Любомирского, Ю. Саламатова, В. Петрова.


Новым шагом в развитии ТРИЗ как науки стал Саммит разработчиков ТРИЗ. В 2006 году он проводился по теме «Законы развития технических систем»238

114

Альтшуллер Г. С., Шапиро Р. Б. Психология изобретательского творчества. – Вопросы психологии, 1956, №6, С. 37—49.

115

Альтшуллер Г. С. Как научиться изобретать. – Тамбов: Кн. изд., 1961, 128 с. – С.56.

116

Альтшуллер Г. Как работать над изобретением. О теории изобретательства. – Азбука рационализатора. – Тамбов, Кн. Изд-во, 1963. 352 с. – С. 276.

117

Альтшуллер Г. Как работать над изобретением. О теории изобретательства, С. 300—301.

118

Альтшуллер Г. С. О законах развития технических систем. – Баку, 20.01.1977.

119

Альтшуллер Г. С. Творчество как точная наука. Теория решения изобретательских задач. – М.: Сов. радио, 1979. – 184 с. – Кибернетика. – С. 113—127.

120

Альтшуллер Г. С. Законы развития технических систем. – Альтшуллер Г. С. Дерзкие формулы творчества. – Дерзкие формулы творчества/ (Сост. А. Б. Селюцкий). – Петрозаводск: Карелия, 1987. – 269 с. – (Техника-молодежь-творчество), С. 61—65.

121

Напомним, что К. Маркс ввел три обязательных элемента из которых состоит машина: машина—двигатель (у Альтшуллена – двигатель), передаточного механизма (у Альтшуллера – трансмиссия), машины-орудия, или рабочей машины (у Альтшуллера – рабочий орган) – см п. 1.2.

122

Определение понятия «веполь» будет дано в п. 7.7.1.

123

Альтшуллер Г. С. Найти идею. Введение в теорию решения изобретательских задач. – Новосибирск.: Наука, 1986, 209 с. – С. 90—106. Альтшуллер Г. С. Маленькие необъятные миры. Стандарты на решения изобретательских задач. – Нить в лабиринте/Сост. А. Б. Селюцкий. – Петрозаводск: Карелия, 1988. – С. 165—230. http://www.altshuller.ru/triz/standards.asp#223.

124

Альтшуллер Г. С., Верткин И. Линии увеличения пустотности. Баку, 1987. (рукопись). http://www.altshuller.ru/triz/zrts5.asp.

125

Альтшуллер Г. С. Найти идею. Введение в теорию решения изобретательских задач. – Новосибирск: Наука, 1986, 209 с. – С. 59.

126

Альтшуллер Г. С. Найти идею. Введение в теорию решения изобретательских задач. – Новосибирск: Наука, 1986, 209 с. – С. 90—96. Альтшуллер Г. С. Маленькие необъятные миры. Стандарты на решения изобретательских задач. – Нить в лабиринте/Сост. А. Б. Селюцкий. – Петрозаводск: Карелия, 1988. – С. 165—230. http://www.altshuller.ru/triz/standards.asp#223

127

Альтшуллер Г. С. Найти идею. Введение в теорию решения изобретательских задач. – Новосибирск: Наука, 1986, 209 с. – С. 100.

128

Петров В. М. Идеализация технических систем. – Областная научно-практическая конференция «Проблемы развития научно-технического творчества ИТР». Тезисы докладов. Горький, 1983, С. 60—62. Петров В. Закон увеличения степени идеальности. – Тель-Авив, 2002. http://www.trizland.ru/trizba/pdf-books/zrts-08-ideal.pdf Vladimir Petrov, Avraam Seredinski. Progress and Ideality. – TRIZ Futures 2005. 5th ETRIA Conference. November 16 to 18, 2005. Graz, Austria. P. 195—204. – The TRIZ Journal. http://www.triz-journal.com/archives/2006/02/01.pdf Петров В. М. Формулы идеальности. – Научно-практическая конференция «ТРИЗ-ФЕСТ 2009»: сборник трудов конференции. СПб, 2009. – 302 с. – С. 149—152 www.triz-summit.ru/file.php/…/Ideality%20formulas1+examle.doc www.patentovedam.narod.ru/download7/ideality.doc

129

Саламатов Ю. П., Кондраков И. М. Некоторые особенности идеальных технических систем. – Методология и методы технического творчества. Тезисы докладов и сообщений к научно-практической конференции 30 июня – 2 июля 1984 г. – Новосибирск: СО АН СССР, 1984, С. 66—68.

130

Каган Э. Л. Концепция построения модели идеального вещества. – Тезисы докладов Всесоюзной научно-практической конференции «Проблемы развития научного и технического творчества трудящихся» (Тбилиси, 30 сентября – 2 октября 1987 г.). Ч. 1. – М.: ВСНТО, 1987. – С. 96—98.

131

Фей В. Р. В поисках идеального вещества. – Журнал ТРИЗ, Т.1, №1/90, С. 36—41, Т.1, №2/90, С. 31—40.

132

Митрофанов В. В. Несколько мыслей об идеальности. – Журнал ТРИЗ, 1993. Ангарский вариант (электронная версия), С. 45—47.

133

Иванов Г. И. Вопросы самоорганизации в ТС. http://www.trizminsk.org/e/248005.htm.

134

Lyubmirsky A. Ideality Equiation. / International research conference «TRIZfest-2013». – Kiev, Ukraine, August, 01—03, 2013: conf. proc. / MATRIZ. SPb.: Publishing house of the Polytechnic University, 2013. – 300 p., p. 16—25.

135

Кондраков И. М. Динамизация технических систем. – Методология и методы технического творчества. Тезисы докладов и сообщений к научно-практической конференции 30 июня – 2 июля 1984 г. – Новосибирск: СО АН СССР, 1984, С. 70—72.

136

Альтшуллер Г. С., Верткин И. Линии увеличения пустотности. Баку, 1987. http://www.altshuller.ru/triz/zrts5.asp.

137

Петров В. М. Цепочка дробления в технических системах. – Л., 1973, 2 с. (рукопись). Петров В. М. Тенденция дробления объектов. – Л., 1973, 8 с. (рукопись). Петров В. М. Закономерности развития технических систем. – Методология и методы технического творчества. Тезисы докладов и сообщений к научно-практической конференции 30 июня – 2 июля 1984 г. – Новосибирск: СО АН СССР, 1984, С. 52—54. Петров В. Увеличение степени дробления. – Тель-Авив, 2002. http://www.trizland.ru/ trizba/pdf-books/zrts-13-droblenie. pdf.

138

Альтшуллер Г. С. Маленькие необъятные миры. Стандарты на решения изобретательских задач. – Нить в лабиринте/Сост. А. Б. Селюцкий. – Петрозаводск: Карелия, 1988. С. 165—230. http://www.altshuller.ru/triz/standards.asp#223.

139

Рябкин И. П. КПМ – вещество умное. – Магический кристалл физики. – Дерзкие формулы творчества / (Сост. А. Б. Селюцкий). – Петрозаводск: Карелия, 1987. – 269 с. – (Техника-молодежь-творчество), С. 159—165. http://rus.triz-guide.com/2903.html.

140

Саламатов Ю. Система развития законов техники. – Шанс на приключение / Сост. А. Б. Селюцкий. – Петрозаводск: Карелия, 1991. – 304 с. – (Техника – молодежь – творчество), с. 115—122. http://www.trizminsk.org/e/21101490.htm#0491.

141

Петров В. М. Закономерность использования капиллярно-пористых материалов. Л:, 1981, 7 с. Петров В. Закономерность перехода к капиллярно-пористым материалам. – Тель-Авив, 2002. http://www.trizland.ru/trizba/pdf-books/zrts-14-kpm.pdf.

142

Иванов Г. И. Закон сквозного прохода энергии. – Журнал ТРИЗ, 1993. Ангарский вариант (электронная версия), С. 48—52.

143

Литвин С. С. Согласование технических систем. – Методология и методы технического творчества. Тезисы докладов и сообщений к научно-практической конференции 30 июня – 2 июля 1984 г. – Новосибирск: СО АН СССР, 1984, С. 72—74.

144

Поиск новых идей: от озарения к технологии (Теория и практика решения изобретательских задач) / Г. С. Альтшуллер, Б. Л. Злотин, А. В. Зусман, В. И. Филатов. – Кишинев: Картя Молдовеняскэ, 1989. – С. 62—73, 367.

145

Петров В. М. Согласование систем. – Л., 1975, 2 с. (рукопись). Петров В. Согласование технических систем. – Л. 1977. Петров В. Закон согласования систем. – Тель-Авив, 2002. http://www.trizland.ru/trizba/ pdf-books/zrts-10-soglasov. pdf.

146

Герасимов В. М., Литвин С. С. Зачем технике плюрализм. – Журнал ТРИЗ, Т.1, №1/90, С. 11—25.

147

Френклах Г. Б., Езерский Г. А. О некоторых закономерностях перехода в надсистему. – Журнал ТРИЗ, Т.1, №1/90, С. 25—29.

148

Пиняев А. М. Объединение под законом функции (Функциональный подход к объединению альтернативных систем). 1/95 (№10), С. 33—37.

149

Петров В. М. О вепольном анализе. – Л., 1973. Петров В. Закон увеличения степени вепольности. – Л. 1981. Петров В. М. Тенденции развития вепольных систем. – Л. 1986. Петров В., Злотин Э. Вепольный анализ. Учебное пособие. Тель-Авив, 1992 Петров В. Злотина Э. Структурный вещественно-полевой анализ. – Тель-Авив, 1997. Петров В., Злотина Э. Структурный вещественно-полевой анализ. – Тель-Авив, 1999. http://www.trizland.com/trizba/pdf-books/vepol.pdf. Петров В. Структурный вещественно-полевой анализ. Тель-Авив, 2002 http://www.trizland.ru/trizba.php?id=111. Петров В. Вепольный анализ для профессионалов. – Тель Авив, 2003. Петров В. Закон увеличения степени вепольности. Международная научно-практическая конференция «ТРИЗфест-2012». Лаппеенранта; С. Петербург, 2—4 августа, 2012 г.: сб. тр. – СПб.: Изд-во Политехн. ун-та, 2012. – 154 с., С. 50—57. Petrov V. The Law of Increasing Degree of Su-Field. The CIL Journal. http://thecontinualimprovementlab.com/wp-content/uploads/2012/10/V-Petrov-Su-Field-Paper-English-10-15-12.pdf. Петров В., Воронов Г. Новый подход к вепольному (структурному) анализу / Развитие вепольного анализа и изобретательского мышления. / Сборник научных работ. Библиотека Саммита разработчиков ТРИЗ. Выпуск 5. Киев, 2013. – 258 с., С. 33—55. http://www.triz-summit.ru/file.php/id/f5677/name/Petrov%20V.%20Voronov %20G.%20A%20new%20approach%20to%20Su-Field%20_structu. pdf. Petrov V., Voronov G. A New Approach to Su-Field (structural) Analysis / Further development of Su-Field Analysis. Development of Inventive Thinking. / Collection of Scientific Papers. TRIZ Developers Summit Library. Issue 5. Kiev, 2013. – 258 pages, p. 166—188. http://www.triz-summit.ru/file.php/id/f5682/name/Petrov%20V.%20Voronov%20G.%20 A%20new%20approach%20to%20Su-Field%20_structu-ENG. pdf.

150

Герасимов В. М., Литвин С. С. Основные положения методики проведения ФСА. Свертывание и сверхэффект. – Журнал ТРИЗ, Т.3, №2/92, С. 7—45.

151

Дубров В. Е. Методика поиска сверхэффектов. – Журнал ТРИЗ, Т.3, №2/92, С.46—50.

152

Петров ВМ. Точка – линия – объем. – Л., 1973. (рукопись) Петров В. Система законов развития техники – Тель-Авив, 2002. http://www.trizland.ru/trizba/pdf-books/zrts-02-system.pdf. Петров В. Обобщенные модели решения изобретательских задач. – Тель-Авив, 2007 http://www.triz-summit.ru/ru/section.php?docId=3896.

153

Любомирский А., Литвин С. Законы развития технических систем. GEN3 Partners, 2003. http://www.metodolog.ru/00767/00767.html.

154

Петров В. М. Системный анализ технических систем. Прогнозирование научно-технического прогресса. – Л.: ЛДНТП, 1976. Петров В. М. Системный анализ выбора технических задач. – Методы решения конструкторско-изобретательских задач. Тезисы докладов. – Рига, 1978, С.73—75.

155

Быстрицкий А. А. Системность ТС и технические модели. – Журнал ТРИЗ, 1993. Ангарский вариант (электронная версия), С. 35—36.

156

Герасимов В. М., Литвин С. С. Учет закономерностей развития техники при проведении функционально-стоимостного анализа технологических процессов. – Практика проведения функционально-стоимостного анализа в электротехнической промышленности/Под ред. М. Г. Карпунина. – М.: Энергоатомиздат, 1987. – 288 с. – С. 193—210.

157

Петров В. М. Система адаптивного управления. – Конференция студенческих работ ЛКИ. – Л., 1965. Петров В. М. Адаптивная система управления с моделью. – Конференция студенческих работ ЛКИ. – Л., 1966. – Конференция студенческих работ ЛКИ. – Л., 1968. Петров В. М. Самонастраивающаяся система автоматического управления с подстраиваемой моделью. – Конференция студенческих работ ЛКИ. – Л., 1967. Петров В. М. Системный анализ систем автоматического управления. Петров В. М. Аналитический обзор литературы по системным исследованиям. – Л. 1969 (рукопись).

158

Петров В. М. Обзор работ по развитию техники. – Л. 1972 (рукопись). Работа периодически пополнялась.

159

Петров В. М. Использование законов диалектики для развития технических систем. – Л., 1973, 4 с. Позже эта работа была опубликована в: Жуков Р. Ф., Петров В. М. Современные методы научно-технического творчества (на примере предприятий судостроительной промышленности). Учебное пособие. – Л.: ИПК СП, 1980. – С. 53—57. В Интернете работу можно увидеть в: Петров В. Законы диалектики в развитии технических систем. – Тель-Авив, 2002. http://www.trizland.ru/trizba/pdf-books/zrts-03-dialekt.pdf.

160

Альтшуллер Г. С. Алгоритм изобретения. – М: Моск. рабочий, 1973. – 296 с. http://www.altshuller.ru/triz/technique1.asp

161

Петров В. М. Цепочка дробления в технических системах. – Л., 1973, 2 с. (рукопись). Петров В. М. Тенденция дробления объектов. – Л., 1973, 8 с. (рукопись).

162

Петров ВМ. Управление весом. – Л., 1973. (рукопись).

163

Петров ВМ. Точка – линия – объем. – Л., 1973. (рукопись).

164

Голдовский Б. И. О противоречиях в технических системах. Материалы к семинару преподавателей методики изобретательства. – Горький, ОЛМИ при ЦС ВОИР, 1974, 28 с. (ротапринт). http://www.metodolog.ru/00001/00001.html.

165

Петров В. М. Цепочка дробления в технических системах. – Л., 1973, 2 с. (рукопись). Петров В. М. Тенденция дробления объектов. – Л., 1973, 8 с. (рукопись).

166

Петров В. Увеличение степени дробления. – Тель-Авив, 2002. http://www.trizland.ru/ trizba/pdf-books/zrts-13-droblenie. pdf

167

Злотин Б. Л. Анализ процессов. – Л., 1979

168

Альтшуллер Г. С. Творчество как точная наука. Теория решения изобретательских задач. – М.: Сов. радио, 1979. – 184 с. – Кибернетика. (В несколько ином виде этот закон был сформулирован Г. С. Альтшуллером в его первой публикации по ТРИЗ: Альтшуллер Г. С., Шапиро Р. Б. Психология изобретательского творчества. – Вопросы психологии, 1956, №6, С. 37 – 49).

169

Литвин С. С. Согласование технических систем. – Методология и методы технического творчества. Тезисы докладов и сообщений к научно-практической конференции 30 июня – 2 июля 1984 г. – Новосибирск: СО АН СССР, 1984, С. 72—74.

170

Поиск новых идей: от озарения к технологии (Теория и практика решения изобретательских задач) / Г. С. Альтшуллер, Б. Л. Злотин, А. В. Зусман, В. И. Филатов. – Кишинев: Картя Молдовеняскэ, 1989. – С. 62—73, 367.

171

Петров В. М. Согласование систем. – Л., 1975, 2 с. (рукопись) Петров В. М. Структура закона согласования. – Л., 1978, 3 с. (рукопись) Петров В. Закон согласования систем. – Тель-Авив, 2002. http://www.trizland.ru/ trizba/pdf-books/zrts-10-soglasov. pdf

172

Злотин Б. Л., Зусман А. В. Общие законы развития. – Журнал ТРИЗ, 1/94 (№9), С. 24—28.

173

Саламатов Ю. Система развития законов техники. – Шанс на приключение / Сост. А. Б. Селюцкий. – Петрозаводск: Карелия, 1991. – 304 с. – (Техника – молодежь – творчество), с. 115—122. http://www.trizminsk.org/e/21101490.htm#0491

174

Петров В. Законы развития систем. Серия статей. – Тель-Авив, 2002. http://www.trizland.ru/trizba.php?id=108.

175

Иванов Г. И. И начинайте изобретать: Научно-популярная книга. – Иркутск: Восточно-Сибирское кн. Изд-во, 1987. – 240 с., С. 187—190.

176

Захаров А. Н. К разработке системы законов развития технических систем. – Журнал ТРИЗ, 1/95 (№10), С.19—29 http://www.triz-spb.ru/lit/_95_1/Zaharov_zrts.htm. Захаров А. Н. Иерархия систем: вверх по лестнице, идущей …вверх. – Журнал ТРИЗ, 1/96 (№11), С. 34—39. Захаров А. Н. О единстве инструментов ТРИЗ. – Технология творчества, №1, 1999, С. 19—38

177

Девойно И. Г. Усложнение технических систем. – Журнал ТРИЗ, 2.1.91 (№3), С.56—63.

178

Рубин М. С. Основы ТРИЗ. Применение ТРИЗ в программных и информационных системах: Учебное пособие. – СПб.: СПРИНТ, 2011. – 226 с.

179

Поиск новых идей: от озарения к технологии (Теория и практика решения изобретательских задач) / Г. С. Альтшуллер, Б. Л. Злотин, А. В. Зусман, В. И. Филатов. – Кишинев: Картя Молдовеняскэ, 1989. – 381 с.

180

Злотин Б. Л., Зусман А. В. Законы развития и прогнозирование технических систем: Методические рекомендации. – Кишинев: Картя Молдовеняскэ, 1989. – 114 с.

181

Zlotin B., Zusman A. Directed Evolution. Philosophy, Theory and Practice. Ideation International Inc. 2001.

182

Zlotin B., Zusman A. Patterns of Evolution: Recent Findings on Structure and Origin. Altshuller Institute’s TRIZCON2006, April, 2006, Milwaukee, WI USA http://www.triz-journal.com/archives/2006/09/04.pdf

183

Петров В. М. Биология и законы развития техники. – Л., 18.08.1976, 12 с. (рукопись). Работа доложена на Ленинградском семинаре преподавателей и разработчиков ТРИЗ в 1977 г. В расширенном виде эта работа имеется на данном CD. http://www.triz-summit.ru/ru/section.php?docId=4618 Петров В. М. Сравнительный анализ законов развития биологии и техники. Методы решения научно-технических задач. – Л: ЛДНТП, 1979, С. 63—66.

184

Петров В. М. Система законов, закономерностей и тенденций развития технически. Прогнозирование научно-технического прогресса. – Л.: ЛДНТП, 1978. Петров В. М. Систематизация законов развития технических систем. Л., 1979. – 23 с. (рукопись). Материал опубликован в Петров В. М. О закономерностях развития технических систем. – Доклад на Ленинградском городском семинаре «Обмен опытом по обучению молодежи научно-техническому творчеству». – Л.: ЛОП НТО Машпром, 1981. – С. 7 – 19. Петров В. М. Закономерности развития технических систем. – Методология и методы технического творчества. Тезисы докладов и сообщений к научно-практической конференции. – Новосибирск: АН СССР СО, 1984. – С. 52—54.

185

Петров В. М. Систематизация законов развития технических систем. Л., 1979. – 23 с. (рукопись). Материал был опубликован в Петров В. М. О закономерностях развития технических систем. – Доклад на Ленинградском городском семинаре «Обмен опытом по обучению молодежи научно-техническому творчеству». – Л.: ЛОП НТО Машпром, 1981. – С. 7 – 19.

186

Петров В. М. Закономерности развития технических систем. – Методология и методы технического творчества. Тезисы докладов и сообщений к научно-практической конференции 30 июня – 2 июля 1984 г. – Новосибирск: СО АН СССР, 1984, С. 52—54. Система была доложена на семинаре преподавателей и разработчиков ТРИЗ (Петрозаводск-82).

187

Петров В. М. Система законов развития ТС. – Доклад на семинаре преподавателей и разработчиков ТРИЗ (Петрозаводск-82). – Л.: 1982.

188

Петров В. М. Идеализация технических систем. – Областная научно-практическая конференция «Проблемы развития научно-технического творчества ИТР». Тезисы докладов. Горький, 1983, С. 60—62

189

Петров В. М. Принципы составления сценария на качественном уровне. – Методологические проблемы технического творчества. Тезисы докладов. – Рига, 1979, С. 136—138. Петров В. М. Методика выбора перспективного направления разработки изделий. Методическая разработка. – Л.: НПО «Уран», 1980. – 64 с. Петров В. М. Закономерности развития технических систем. – Методология и методы технического творчества. Тезисы докладов и сообщений к научно-практической конференции. – Новосибирск: АН СССР СО, 1984. – С. 52—54.

190

Петров В. М. Принципы и методика выбора перспективного направления НИОКР в судостроении. Автореферат диссертации на соискание ученой степени кандидата экономических наук. – Л.: ЛКИ, 1985. – 20 с.

191

Петров В. М. Методика выбора перспективного направления НИОКР. – Л.: ВНИИЭСО, 1985. – 69 с.

192

Петров В. Закономерности развития потребностей. – Тель-Авив, 2002. http://www.trizland.ru/trizba/pdf-books/zrts-04-potrebnosti.pdf. Петров В. М. Законы развития потребностей. – Труды Международной конференции МАТРИЗФест – 2005. 3—4 июля 2005 г. Санкт-Петербург. Ст. Петербург, 2005. С. 46—48. Петров В. М. Законы развития потребностей. – Тель-Авив, 18 с. http://www.trizland.ru/trizba.php?id=255.

193

Петров В. Закономерности развития функций. – Тель-Авив, 2002. http://www.trizland.ru/trizba/pdf-books/zrts-05-function.pdf.

194

Злотина Э., Петров В. Прогнозирование развития технических систем с использованием ТРИЗ. – Л.: ЦНТТМ «Квант», 1989. Петров В. М., Злотина Э. С. Теория решения изобретательских задач – основа прогнозирования развития технических систем. Методические разработки. – Братислава: ДТ ЧСНТО, 1989, 92 с.

195

Петров В. М., Злотина Э. С. Теория решения изобретательских задач. Учебник. – Л., 1990, 425 с. (рукопись подготовленная для издательства «Машиностроение»).

196

Подробнее описано в п. 2.3 (рис. 2.9).

197

Петров В. Системный подход в бизнес-проектировании. – Труды Международной конференции «Три поколения ТРИЗ» и Саммит разработчиков ТРИЗ. ТРИЗФест – 2006. 13—18 октября 2006 г. Санкт-Петербург, 2006. С. 343—350. Петров В. Бизнес-проектирование. Системный анализ продвижение продукта на рынок. – Управленческий консалтинг. Настольная книга руководителя. Книга 2. Киев. ПЦ «Фолиант», 2006. – C. 73—83. Petrov V. Designing Business Projects. TRIZ: una Nuevo Enfoque Papa La Innovacion Sistematica. (Memorias). 1er. Congreso Iberoamericano de Innovacion Tecnologica. 4 al 7 de septiember de 2006 Puebla, Mexico. P. 174—182. http://www.triz-summit.ru/file.php/ id/f4149/name/Business_designing. pdf.

198

Саламатов Ю. П., Кондраков И. М. Тепловая труба. Идеализация технических систем. Красноярск, 1984. http://www.trizminsk.org/e/21102000.htm. Саламатов Ю. П. Эволюция вещества в технических системах. – Методология и методы технического творчества. Тезисы докладов и сообщений к научно-практической конференции 30 июня – 2 июля 1984 г. – Новосибирск: СО АН СССР, 1984, С. 64—66.

199

Саламатов Ю. Система развития законов техники. – Шанс на приключение / Сост. А. Б. Селюцкий. – Петрозаводск: Карелия, 1991. – 304 с. – (Техника – молодежь – творчество), С. 6—174. Саламатов Ю. П. Система законов развития техники (основы теории развития технических систем). Изд. 2-е испр. и доп. Книга для изобретателя изучающего ТРИЗ. INSTITUTE OF INNOVATIVE DESIGN: Красноярск, 1996г. http://www.triz.minsk.by /e/21101300.htm.

200

Любомирский А., Литвин С. Законы развития технических систем. GEN3 Partners, 2003. http://www.metodolog.ru/00767/00767.html.

201

Рубин М. Этюды о законах развития техники. Труды Международной конференции «Три поколения ТРИЗ» и Саммит разработчиков ТРИЗ. ТРИЗФест – 2006. 13—18 октября 2006 г. Санкт-Петербург, 2006. – С. 219—228. http://www.temm.ru/ru/ section.php? docId=3432.

202

Рубин М. С. Основы ТРИЗ. Применение ТРИЗ в программных и информационных системах. – СПб., 2011. – 225 с. – С. 46—52, 199—206.

203

Рубин М. С. Этюды об эволюционном системоведении. ТРИЗ в развитии/ Сборник образовательных программ и научных трудов. Часть 1. Библиотека Саммита разработчиков ТРИЗ. Выпуск 7. Санкт-Петербург, Россия, 2015. – 252 с. – С. 196—200.

204

Альтшуллер Г. С. Как делаются открытия. Мысли о методике научной работы. – Баку, 1960. Альтов Г., Журавлева В. Путешествие к эпицентру полемики. – Звезда, 1964, №2.

205

Митрофанов В. В., Соколов В. И. О природе эффекта Рассела. «Физика твердого тела», 1974г., т. 16, №8, С. 24—35. Митрофанов В. В. По следам возбужденной молекулы. – Техника и наука, 1982, №2. Митрофанов В. В. От технологического брака до научного открытия. – Ассоциация ТРИЗ Санкт-Петербурга, 1998. – 395 с.

206

.Кондраков И. М. Алгоритм открытий? – «Техника и наука», №11 – 1979 г.

207

Цуриков В. М. Даешь радиоконтакт! – Петрович Н. Т., Цуриков В. М. Путь к изобретению. – М.: Мол. гвардия, 1986. С.119—128.

208

Головченко Г. Г. Ветроэнергетика растений. – Грани творчества / Сост. Б. С. Вайсберг. – Свердловск: Сверд. —Урал. Кн. Изд-во, 1989. С. 97—107.

209

Иванов Г. И. И начинайте изобретать: Научно-популярная книга. – Иркутск: Восточно-Сибирское кн. Изд-во, 1987. – 240 с., С. 136—142.

210

Злотин Б. Л., Зусман А. В. К вопросу о применении ТРИЗ в науке. – Журнал ТРИЗ, Т.1, №1/90, С. 45—54. Злотин Б. Л., Зусман А. В. Решение исследовательских задач. Кишинев: МНТЦ «Прогресс», Картя Молдовеняскэ, 1991. Злотин Б. Л., Зусман А. В. Использование аппарата ТРИЗ для решения исследовательских задач. – Кишинев: 1985.

211

Петров В. М. Биология и законы развития техники. – Л., 18.08.1976, 12 с. (рукопись). Работа доложена на Ленинградском семинаре преподавателей и разработчиков ТРИЗ в 1977 г. В расширенном виде эта работа имеется на данном CD. http://www.triz-summit.ru/ru/section.php?docId=4618. Петров В. М. Сравнительный анализ законов развития биологии и техники. Методы решения научно-технических задач. – Л: ЛДНТП, 1979, С. 63—66.

212

Захаров И. С. О законах биологических систем. – Журнал ТРИЗ, 1/96 (№11), С. 32—33.

213

Тимохов В. И. Биологические эффекты. Познание. Информационно-методический сборник для учителей и учащихся. Вып. 5, Рига: Научно-технический центр «Прогресс». Лаборатория педагогической технологии. 1993. – С. 4—31.

214

Альтшуллер А., Рубин М. Что будет после окончательной победы. Восемь мыслей о природе и технике. В сб. Шанс на приключение, Сост. А. Б. Селюцкий, Петрозаводск, «Карелия», 1991, С. 221—236.

215

Мурашковска И., Мурашковский Ю. М. «Искусство» от слова «техника». – Журнал ТРИЗ, Т.1, №1/90, С. 55—64.

216

Флореску Р. С. Приемы фантазирования в изобразительном искусстве. – Журнал ТРИЗ, Т.3, 2/92, (№6), С. 69—77.

217

Нестеренко А. А. Страна загадок. Методика использования загадок. – Журнал ТРИЗ, 3.4.92, С. 36—48.

218

Перницкий С. И. Приемы устранения противоречий в пословицах. – Журнал ТРИЗ, Т.3, 1/92, (№5), С. 69—73.

219

Молдавер А. Анатомия сюжета. Иерусалим, 2002, 128 с.

220

Злотина Э. С. Закономерности развития музыкальных форм. – Технология творчества, №1, 1999, с. 9—14. http://www.trizminsk.org/e/245003.htm.

221

Альтшуллер Г. С., Верткин И. М. Как стать еретиком. Жизненная стратегия творческой личности. Как стать еретиком/Сост. А. Б. Селюцкий. – Петрозаводск: Карелия, 1991, С. 15—16.

222

Злотин Б. Л., Зусман А. В., Каплан Л. А. Закономерности развития коллективов. – Кишинев: МНТЦ «Прогресс», 1990.

223

Зиновкина М. М. Инженерное мышление. (Теория и инновационные креативные педагогические технологии) Монография. – М.: МГИУ, 1996 – 283 с. Зиновкина М. М. Креативное инженерное образование (Теория и инновационные креативные педагогические технологии). М.: МГИУ. Монография. 2003. – 350 с. Зиновкина М. М. Многоуровневое непрерывное креативное образование и школа. Пособие для учителей. Приложение к журналу «Учитель». – М.: Приоритет – 2002, 2006 (переиздание). – 48 с. Зиновкина М. М. НФТМ-ТРИЗ – креативное образование ХХ1 века (Теория и практика) М., МГИУ, 2008. – 305 с. Зиновкина М. М. Инженерное творчество (ТРИЗ). Теория и практика решения творческих инженерных задач/ Под ред. Проф. Р. Т. Гареева. Учебное пособие. М.: КНОРУС, – 2010. – 164 с.

224

Бухвалов В. А. Алгоритмы педагогического творчества. – М.: Просвещение, 1993. – 96 с.

225

Гин А. А. Приемы педагогической техники: Свобода выбора. Открытость. Деятельность. Обратная связь. Идеальность: Пособие для учителей. – Гомель: ИПП «Сож», 1999. – 88 с.

226

Уральская В. Л., Литвин С. С. Фокус как объект изучения и методический прием. – Журнал ТРИЗ, 3.4.92, С. 59—63.

227

Викентьев И. Л. Приемы журналистики. – Журнал ТРИЗ, Т.3, 1/92, (№5), С. 56—68.

228

Викентьев И. Л. Приемы рекламы и Public Relations, Ч.I, СПб, Изд-во ТОО «ШАНС-ТРИЗ», 1995. – 228 с.

229

Фаер С. А. Приемы стратегии и тактики предвыборной борьбы: PR-секреты общественных отношений. «Ловушки» в конкурентной борьбе. Механизмы политической карьеры. – СПб: изд-во «Стольный град», 1998. – 136 с.

230

Петров В. М. Использование законов диалектики для развития технических систем. – Л., 1973, 4 с. Позже эта работа была опубликована в: Жуков Р. Ф., Петров В. М. Современные методы научно-технического творчества (на примере предприятий судостроительной промышленности). Учебное пособие. – Л.: ИПК СП, 1980. – С. 53—57. В Интернете работу можно увидеть в: Петров В. Законы диалектики в развитии технических систем. – Тель-Авив, 2002. http://www.trizland.ru/trizba/pdf-books/zrts-03-dialekt.pdf.

231

Лимаренко А. А. ТРИЗ как прикладная диалектика. – Журнал ТРИЗ, 1993. Ангарский вариант (электронная версия), С. 53—57.

232

Альтшуллер Г. О прогнозировании развития технических систем. – Баку, 1975. – 13 с. (рукопись) http://www.altshuller.ru/triz/zrts3.asp.

233

Злотин Б. Л., Зусман А. В. Законы развития и прогнозирование технических систем: Методические рекомендации. – Кишинев: Картя Молдовеняскэ, 1989. – 114 с.

234

Рубин М. С. Методы прогнозирования на основе ТРИЗ. – http://www.trizminsk.org/e/216002.htm.

235

Петров В. М. Прогнозирование развития технических систем. – Л.: НТО Машпром, 1976, 48 с. Петров В. М. Система законов, закономерностей и тенденций развития технически. Прогнозирование научно-технического прогресса. – Л.: ЛДНТП, 1978. Петров В. М. Прогнозирование развития техники на основе законов развития технических систем. – Теория и практика обучения техническому творчеству. Тезисы докладов. Челябинск: УДНТП, 1988. – С. 6—8. Петров В. М. ФСА на этапе прогнозирования развития технических систем. – Petrov V.M. Hodnotove Inzinierstvo a Jeho Uloha v Intenzifikacii Ekonjmiky. – Bratislava: Dom Techniky, 1989. – С. 33—34. Злотина Э., Петров В. Прогнозирование развития технических систем с использованием ТРИЗ. – Л.: ЦНТТМ «Квант», 1989. Петров В. Прогнозирование развития систем. – Тель-Авив, 2002. http://www.trizland.ru/trizba/pdf-books/zrts-19-prognoz.pdf.

236

Захаров И. С. ТРИЗ и марксизм: опыт прогнозирования кризисов теории. – Журнал ТРИЗ, Т.3, 1/92, (№5), С. 13—23.

237

Шпаковский Н. А. Деревья эволюции: анализ технической информации и генерация новых идей. – М. ТРИЗ-профи, 2006. – 240 с. Шпаковский Н. А. Реферат книги «Деревья эволюции. Анализ технической информации и генерация новых идей» http://www.gnrtr.com/powers/ru/evolution _tree_ru. pdf.

238

Труды Международной конференции «Три поколения ТРИЗ» и Саммит разработчиков ТРИЗ. ТРИЗФест – 2006. 13—18 октября 2006 г. Санкт-Петербург, 2006. http://www.triz-summit.ru/ru/section.php?docId=3352.

Законы развития систем. ТРИЗ

Подняться наверх