Читать книгу Мозг и его потребности. От питания до признания - Вячеслав Дубынин - Страница 4

Глава 1. Общие принципы строения и работы мозга. Классификация потребностей
Мозг как химическая конструкция

Оглавление

Если копнуть еще глубже, то мы увидим, что мозг – не только электрическая машина, но и химическая конструкция. В ней огромную роль играют так называемые синапсы – контакты между нервными клетками. Как правило, аксоны нейрона дотягиваются до следующей клетки.

Пока информация находится внутри нейрона, она передается в электрической форме в виде импульсов. Но когда приходит время переходить к следующей клетке, информация передается в химической форме в виде особых веществ – медиаторов, и это очень интересно.

Получается чередование: в нейроне – электричество, между нейронами – химия. Потом опять электричество и опять химия. Это чередование химической и электрической передачи – важный базовый принцип работы мозга.

Именно на химическом уровне нам гораздо легче влиять на работу и состояние нервной системы. Если мы знаем, какие вещества выделяются в синапсах (а наука это уже неплохо знает), мы можем вводить молекулы, похожие на них, или, например, мешающие им работать. Этим мы серьезно воздействуем на функции мозга: изменяем баланс между возбуждением и торможением, влияем на память, эмоции. Подавляющее большинство веществ, которые воздействуют на мозг: лекарства, яды или наркотические препараты, – похожи на химические соединения, выделяющиеся в синапсах. Соединения эти называются медиаторами, и они являются посредниками между клетками. Синапсы очень важны для работы мозга!

На рис. 1.1 справа крупно изображен синапс. Внутри окончания аксона находятся синаптические пузырьки – мембранные пузырьки, которые содержат медиатор. Логика работы синапса следующая: сначала по мембране нервной клетки пробегает электрический импульс, он называется потенциал действия; этот импульс запускает движение пузырьков с медиатором в сторону следующей клетки. Дальше пузырьки доходят до окончания аксонов, лопаются, медиатор попадает в узкую щель между аксоном и ближайшей клеткой (она называется синаптическая щель) и влияет на следующую клетку. Это влияние означает, что на мембране следующей клетки сидят особые белки, они выполняют функцию кнопок, а медиатор – это палец, который нажимает на эти кнопки. После того как медиатор нажал на эти белковые кнопки, следующая клетка может возбудиться, и тогда на ней возникнет импульс и побежит дальше. Это означает, что некий кусочек информации будет передаваться дальше.

Бывают и обратные ситуации, когда нажатие на «кнопку» тормозит следующую клетку, и такая клетка на некоторое время перестает передавать сигналы. Это тоже важно.

В нервной системе человека все время сосуществуют и конкурируют два принципа, все время решаются две задачи. Одна задача – это передавать информацию, а вторая – не передавать лишнюю информацию.

То и другое очень важно, поэтому соответственно есть механизмы передачи импульса на следующие клетки и есть механизмы блокады такой передачи. Медиаторы, выделяющиеся в конкретных синапсах, по своим эффектам делятся на две большие группы: возбуждающие и тормозные.

Возбуждающие – те, которые заставляют следующую клетку работать, генерировать импульсы, а тормозные – те, которые мешают следующей клетке проводить, как правило, ненужную информацию.

Важнейшие медиаторы – глутаминовая кислота и гамма-аминомасляная кислота (ГАМК).

Глутаминовая кислота, или глутамат, одновременно известна как вкусовая добавка. Тот самый глутамат, который улучшает вкус, в мозге работает как важнейший медиатор. Глутаминовую кислоту в качестве медиатора используют не менее 40–50 % нервных клеток. За счет выделения этого вещества передаются сенсорные сигналы, работает память, центры мышления и принятия решений. Двигательные программы, пока они не дошли до мышц, также зависят от выделения глутамата.

ГАМК – гамма-аминомасляную кислоту – в качестве медиаторов, судя по всему, использует не менее трети нейронов. Это вещество мешает проводить лишние сигналы и сдерживает шум в нервной системе, блокируя ненужные информационные потоки, мешающие обработке информации. Эта задача не менее важная, чем проведение сигналов. Наш мозг хорошо работает не тогда, когда много нейронов возбуждено, а когда возбуждены правильные нейроны и их – в идеале – небольшое количество.

Есть популярный вопрос, его очень любят задавать: «В мозге в каждый момент времени активно функционирует всего 10 % нейронов. Как сделать так, чтобы больше работало?» Многие считают, что чем больше, тем лучше. Они ошибаются. На самом деле если импульсы начнут генерировать слишком много нервных клеток, то возникнет перевозбуждение или даже вовсе – эпилептический припадок.

Хорошо работающий мозг – это не мозг, который активировал все клетки, а мозг, который активировал правильные клетки. Тормозить шумящие нейроны – очень важная задача, и ГАМК эту задачу решает.

Мы сейчас кратко познакомились с двумя главными игроками: с возбуждением и торможением. В дальнейшем о них не будет часто упоминаться, нас больше будут интересовать медиаторы второго уровня – медиаторы, которые отвечают за эмоции, мотивации и потребности. Эти медиаторы прежде всего генерируют позитивные эмоциональные переживания в те моменты, когда человеку удается – с точки зрения нашей биологии – совершить что-то хорошее.

Например, вы поели, или узнали что-то новое, или благополучно убежали от опасности – вот в эти моменты при возникновении эмоциональных переживаний в нашем мозге выделяются другие, не менее важные медиаторы. Главные из них – дофамин, норадреналин и эндорфины. На самом деле список этих медиаторов гораздо больше. Медиаторов, связанных с удовлетворением потребностей и положительными эмоциями, около десятка, и мы постепенно будем с ними знакомиться.

Иногда нейрон сравнивают с чипом компьютера, причем весьма сложным, потому что на нервной клетке в среднем сходится около 3000–5000 синапсов. Каждый нейрон одновременно получает информацию по нескольким тысячам каналов. Причем часть этих каналов – возбуждающие, часть – тормозные, и нейрон принимает решение о том, проводить сигнал дальше или не проводить. Все это складывается в весьма сложную картину. Отдельные чипы-нейроны собираются в вычислительные центры, занимающиеся дыханием, реакцией на звук, кратковременной памятью.

В таком случае мозг можно сравнить с огромным компьютерным центром, в котором тысячи отдельных вычислительных устройств сложным образом взаимодействуют друг с другом.

Сколько вообще в нашем мозге нейронов? Обычно дают цифру: 90–100 млрд. Цифра впечатляющая – попробуйте этот самый миллиард представить. Это гораздо больше, чем жителей на планете Земля. Каждый нейрон связан в среднем с 3000–5000 других нейронов. Представьте себе 100 млрд абонентов сети, каждый из которых одновременно общается с 5000 других абонентов.

Получается, что сложность информационных потоков в нашей голове сравнима, наверное, со всем интернетом. Эти процессы еще предстоит серьезно изучать. Наука, вся наша современная техника только начали разбираться в мозге, в нейросетях. Какие-то глобальные изменения в мозге мы видим хорошо, а над пониманием тонкостей передачи информации в нейросетях еще предстоит усердно поработать.

При этом клетки мозга очень маленькие, наиболее частый размер тела нейрона 0,03–0,05 мм. Общеизвестно, что средний вес мозга человека – 1300 граммов. У мужчин, примерно на 100 граммов тяжелее, у женщин легче. Когда это впервые выяснили, мужская часть населения ужасно загордилась. Но потом в процессе изучения обнаружилось, что не все так просто. Дело в том, что помимо нейронов в нервной ткани содержатся еще и так называемые глиальные клетки. Это особые вспомогательные клетки, которые расположены вокруг нейронов. Они защищают нейроны от ударов, следят за химическим составом межклеточной среды, обеспечивают электрическую изоляцию и еще много чего. Оказалось, в том, что мужской мозг больше весит, «виноваты» в основном глиальные клетки. Нейронов у мужчин и женщин примерно одинаково – 85–90 млрд (хотя существует еще и связь между массой мозга и общей массой тела), и эта цифра гораздо стабильнее, чем общий вес нервной системы. Однако мужской мозг лучше «упакован», лучше защищен от ударов по голове. Это логично, мужчины, очевидно, вели более суровый образ жизни, когда охотились за мамонтами или доказывали один другому, что именно он – вожак племени… Женский мозг в этом смысле более «нежный, трепетный», он не рассчитан на грубое обращение.

Львиная доля тел наших нейронов находится в головном и спинном мозге, но, кроме того, у нас по организму раскидано более сотни маленьких мозгов, которые называются ганглии. Там тоже есть нейроны, часть из которых отвечает за разнообразную чувствительность (за сенсорные сигналы), а часть работает с внутренними органами. Ганглии, конечно, подчиняются головному и спинному мозгу. Из ганглиев, из головного и спинного мозга выходят нервные отростки – аксоны и дендриты, они собираются в нервы, которые работают с нашими мышцами и органами. В нервах часто сосуществуют встречные информационные потоки, часть из которых от органов чувств идет в мозг, а часть направляется к эффекторным системам – к мышцам и внутренним органам.

Уточним, что когда аксон направляется к следующей клетке, то этой клеткой может быть нейрон, а может быть мышечная клетка, может быть клетка сердца или кишечника. То есть синапсы бывают не только внутри мозга, но и, например, между нейроном и мышцей, между нейроном и внутренним органом.

С точки зрения цитологов – ученых, которые занимаются внутренним строением клетки, нейрон, в общем, вполне стандартная клетка. Внешне он, конечно, необычно выглядит из-за многочисленных отростков, а внутри такие же, как и в других клетках, структуры: ядро, митохондрии, рибосомы. И обмен веществ в нейронах вполне стандартный. Но важно знать, что нейроны потребляют много энергии. По количеству потребляемой энергии мозг, его нейроны занимают первое место, ему нужно больше всего глюкозы и кислорода на 1 грамм веса. Поэтому, если что-то случается с глюкозой или кислородом, именно мозг первым повреждается. Второе место по потреблению энергии занимают почки, третье – сердце, но мозг все равно лидер по интенсивности обмена веществ.

Нервные клетки поодиночке, конечно, не работают. Для того чтобы даже самые простые функции организовать, они должны собираться в цепи и сети (взаимно пересекающиеся и порой «зацикленные» совокупности нейронных цепей).

Мозг и его потребности. От питания до признания

Подняться наверх