Читать книгу Photo-engraving, Photo-etching and Photo-lithography in Line and Half-tone - W. T. Wilkinson - Страница 8
THE NITRATE OF SILVER BATH (2).
ОглавлениеIn the ancient days of photography, when, to say it was possible to prepare a dry plate nearly as sensitive as a wet collodion plate, was to excite the risible faculties of the audience, the above heading might almost always be seen in the journals, and the amount of matter written under that heading would fill many good-sized volumes. Some writers went into the subject in a very elaborate manner, whilst others would counsel very simple methods of preparation and management.
The directions given above for making a bath solution for line negatives, will, if carried out carefully and cleanly, at once yield a solution giving good negatives. After the bath has been mixed, either with distilled water, ordinary tap water (in iron districts tap water should not be used), or water that has been sunned and filtered, as soon as the bulk has been made up to the eighty ounces, the solution should be put away all night before it is tried, then in the morning filter it carefully through a pledget of cotton-wool stuffed loosely in the neck of a perfectly clean funnel, into a perfectly clean bottle or jug, which must be kept entirely for use of the silver solution. When the bath solution has been filtered it should be perfectly clear; if it is at all cloudy or turbid, the filtration must be repeated.
When the solution is perfectly clear and bright, pour sufficient into a perfectly clean porcelain, glass, or papier-maché dish, then take a clean plate (polished, or albumenized) and coat it with collodion; close the door of the dark-room, and when the film of collodion is perfectly set, raise one end of the dish containing the silver solution, place one edge of the collodionized plate against the bottom of the upper edge of the dish, then drop the plate upon the bottom of the dish, and at the same time lower the dish; by this means the silver solution will flow in an even wave over the surface of the collodionized plate; now place the cover on the dish so as to exclude light and dust, and allow the plate to remain in the solution for five minutes, then with a silver hook lift the plate from the solution, and allow it to drain (remember that no light must get into the dark-room except what is filtered through either two thicknesses of golden fabric, or one of canary medium); when the plate has drained so that no solution drips from it, place it into the carrier of the dark slide; then close the dark slide and let it remain there for five minutes, at the end of which time remove the plate to the sink, and flood it with sufficient developer (page 17) to just cover the film; keep this solution flowing, to and fro, over the {15} plate for the space of two minutes, then wash it under the tap until the surface is no longer greasy; then apply the fixing or clearing solution (page 17) until the whole of the yellow bromo-iodide is dissolved away; again wash, and take the plate into the daylight.
Now comes the test; if the film is perfectly transparent, and clear as the glass itself, the bath is all right; but if there is the slightest deposit (which can be removed by lightly rubbing the finger along the surface of the film), then the solution will require the addition of a little nitric acid. After this stir it well, and after a rest of an hour or two try again, repeat the addition of the nitric acid, and try a plate; repeat until the film, after developing, washing, and fixing, is perfectly clear, and free from deposit and fog.
The bath is now in proper working order, and if reinforced after each day’s work with a sufficient quantity of saturated solution of nitrate of silver (filtered), kept free from contamination with other chemicals, and carefully filtered occasionally, it will remain in good working order for at least six months, and then may be renewed by treating as directed on page 12.
It will sometimes happen, notwithstanding that extreme care and cleanliness is exercised in the management of the bath, that it will not work properly, and the reason why cannot easily be discovered. In such a case, steps must be taken to put the solution into working order.
In the case of rectifying a disordered bath, there are many methods of procedure, but the simplest, and, as a rule, the most certain method, is to render the solution alkaline by the addition of liquor ammonia, adding the ammonia a little at a time; then, after well shaking, test it with red litmus paper and continue the addition of ammonia until the red litmus paper is turned blue. In this alkaline condition the solution should be poured into a large flat dish, and exposed to the action of the sun. That will speedily reduce and throw down in the form of a black precipitate, any organic matter that may be in the bath, and at the same time the heat of the sun will cause evaporation of the ether and alcohol left in the solution by the collodion plates.
The bath solution should be exposed to the sun for two or three days, or until such time as suffices to render the solution clear, and the precipitate entirely separated out. But this cannot take place unless the solution is decidedly alkaline, the presence of acid stopping the action of light.
Do not be in a hurry about doctoring a bath solution (in fact, it will be far best to have two solutions, one in use and one either resting or being doctored), but give the light plenty of time to reduce the organic matter, and also to {16} volatilize the ether and alcohol; then filter the solution through filtering paper (don’t use blotting-paper), as if it is attempted to filter through a pledget of cotton-wool the fine precipitate of organic matter quickly clogs the wool and stops the filtering.
The doctored solution being filtered, test it with a piece of perfectly fresh, blue litmus paper, and add nitric acid, drop by drop—shaking well between the additions of acid—until the blue litmus paper just turns red. Do not add acid sufficient to make the litmus turn violently red, unless the bath is for line negatives, as a bath for half-tone negatives must be only just acid, whereas a bath for line work must contain more acid.
If the color of the litmus paper shows that the alkali has been neutralized, a plate is collodionized, then immersed in the bath for five minutes, then drained, and placed in the dark slide, or in a dark box for five minutes, then flooded with the iron developer (page 17); if, upon the application of this the film should turn black, add more nitric acid, stir up thoroughly, then try again, repeating the trials until, upon fixing the plate with the solution of cyanide of potassium, the film of collodion is left upon the glass plate as clear as it was before it was immersed in the silver bath.
A little above here it is stated that less nitric acid is required in the bath for half-tone negatives than for line work, and the question may well be asked where may the line be drawn? The reply is that, for half-tone work, a piece of blue litmus paper should, upon immersion into the solution, turn red very slowly, but when the bath is required for line negatives the blue litmus may at once indicate the presence of acid.
After a bath solution has been renovated in the above manner, it should be tested for strength, either by the volumetric method (by preference), or by means of the ordinary argentometer sold by the dealers, and, if, after testing, the strength is shown to be too great, dilute with a sufficiency of sunned water (page 13); and if not sufficiently strong, add crystals of nitrate of silver to make up the strength to thirty or thirty-five grains per ounce.
A bath solution renovated as above, will generally be found to work cleaner, and yield brighter negatives than a new solution, and it will also, if carefully used, last longer; but it must be kept up to a proper working strength by the occasional addition of a little of a saturated solution of nitrate of silver.
The fact that the strength of the silver solution has got too low is shown by the presence of semi-opaque, fantastic markings near the thick edge of the collodion film, and also in conjunction with the presence of organic matter in {17} the deposition under the surface of the film of an extremely fine sand-like deposit, which, in the fixed negative, develops into myriads of pinholes in the densest portions of the image.