Читать книгу Heilen mit dem Zeolith-Mineral Klinoptilolith - eBook - Werner Kühni - Страница 7
ОглавлениеZeolithgrundlage
Zeolithe sind natürliche, hydratisierte Alumo-Gerüstsilikate. Sie besitzen aufgrund ihrer Hohlraumstruktur mit zahlreichen Poren und Kanälen eine große innere Oberfläche, die eine außergewöhnlich hohe Adsorptionsfähigkeit für Schwermetalle und andere Schadstoffe bewirkt.
Zeolithe: Entdeckt und benannt wurde diese Silikatgruppe 1756 durch den schwedischen Mineralogen Cronstedt. Er beobachtet, dass Zeolithe beim Erhitzen Wasser abgeben, sodass sie scheinbar sieden und schließlich zu einer weißen Glasperle schmelzen. Die ersten entdeckten Kristalle waren Stilbit und Levyn. Heute gibt es mittlerweile über 140 verschiedene Zeolitharten mit unterschiedlicher Gerüststruktur, wobei davon 60 natürlich und 9 in abbauwürdigen Lagerstätten in Australien, China, Japan, Kroatien, in der Türkei, Ukraine und den USA vorkommen.
Im Jahre 1920 ließ sich mithilfe der Röntgendiffraktion zum ersten Mal die interne Struktur der Zeolithe entschlüsseln. Kurz danach wurde das erste Mal ein Zeolith erfolgreich zum Ionenaustausch eingesetzt.
Zeolithe sind kristalline Na-, K- oder Ca-Alumosilikate5, deren Struktur durch ein Kristallgitter aus miteinander verbundenen Tetraedern charakterisiert wird. Zeolithe können farblos bis weiß oder hellrot bis grünlich gefärbt sein. Weitere Verfärbungen sind durch Verunreinigungen und/oder zusätzliche Mineralien möglich. Durch ihre Struktur können Zeolithe Wasser speichern, das beim Erhitzen wieder abgegeben wird. Ein Zeolith kann das Wasser auch wieder aufnehmen, ohne dass seine Struktur zerstört wird.
Zeolithe sind eine eigenständige Mineralgruppe, die aus 72 eigenständigen Mineralien besteht. Im deutschsprachigen Raum, insbesondere im Verkauf, wird Klinoptilolith immer wieder als Zeolith bezeichnet. Allgemein wird auch von einer Zeolith-Anwendung gesprochen. Diese Gleichsetzung ist jedoch falsch.
Leider setzt sich diese Verwirrung auch im wissenschaftlichen und medizinischen Bereich fort. Der Begriff Zeolith umfasst hier einerseits den natürlichen, andererseits auch die synthetischen Zeolithe. Deswegen ist bei allen wissenschaftlichen oder klinischen Arbeiten genau zu prüfen, ob sie sich mit natürlichen oder synthetischen Zeolithen befassen. Beide Stoffgruppen sind nicht miteinander vergleichbar, da sie auf unterschiedliche Weise entstehen und auch andere physikalische Eigenschaften besitzen.
Struktur
Klinoptilolith besteht aus einer mikroporösen Gerüststruktur von AlO4- und SiO4-Tetraedern. Dabei sind die Aluminium- und Siliziumatome untereinander durch Sauerstoffatome verbunden. Dieses Kristallgitter enthält offene Hohlräume in Form von Käfigen und Kanälen. Die Käfige können Stoffe adsorbieren. In der Natur ist dort in der Regel Wasser adsorbiert, das durch Erhitzen aus den Poren entfernt werden kann, ohne dass sich die Zeolithstruktur ändert.
Da nur solche Moleküle in den Poren adsorbiert werden, welche einen kleineren kinetischen Durchmesser besitzen als die Porenöffnungen der Zeolithstruktur, gehört Klinoptilolith daher auch in die Gruppe der Molekularsiebe. Die Hohlräume entstehen durch die Ringbildung des Grundbausteines (Al, Si), sie können bis zu 50 Prozent seines Volumens ausmachen.
Die einfachste Form ist hierbei ein Kanal, ein theoretisch sich unendlich in eine Richtung fortsetzender Hohlraum. Teile des Zeolithkristallgitters enthalten nicht geschlossene Hohlräume, sogenannte Käfige, welche an die Kanäle angeschlossen sind: Die Käfige sind so groß, dass zusätzliche Atome oder Moleküle in das Kristallgitter mit aufgenommen werden können. Dadurch eignen sie sich für technische Anwendungen, etwa als Katalysatoren für zahlreiche Prozesse der chemischen Industrie, als Materialien zur Trennung von chemischen Substanzen oder als Wasserenthärter. Auf die Adsorptionskraft ist die medizinisch unverzichtbare entgiftende Wirkung zurückzuführen.
Hohlraum im Klinoptilolith-Kristallgitter
Durch Aluminiumatome hat Klinoptilolith eine anionische Gerüstladung. An der inneren und äußeren Oberfläche befinden sich daher bei aluminiumhaltigen Zeolithen Kationen, das heißt bewegliche negativ geladene Elektronen. In Klinoptilolith liegen diese Kationen häufig in gelöster Form in dem Kanalsystem der Zeolithe vor, sind also relativ leicht zugänglich und damit austauschbar. Übliche Kationen sind Na+, K+, Ca2+ und Mg2+. Diese wichtigen Mineralstoffe können somit vom Körper leicht aufgenommen werden.
Nicht austauschbar sind die Aluminiumatome, die fest in das Gitter eingebaut sind und sich chemisch wie Siliziumatome verhalten. Daher ist die oft geäußerte Sorge, seinen Körper bei der Einnahme von Klinoptilolith mit Aluminium zu belasten, völlig unbegründet.
Mineralogie des Klinoptiloliths
Klinoptilolith ist ein wasserhaltiges Alumo-Gerüstsilikat der Gruppe der Blätterzeolithe und der Barrerit-Stilbit-Gruppe. Die Bezeichnung wird normalerweise dann verwendet, wenn mangels Analyse das dominante Kation unbekannt ist und es deshalb nicht einem der anerkannten Minerale der Gruppe exakt zugeordnet werden kann: Klinoptilolith-Ca, Klinoptilolith-K und Klinoptilolith-Na. Im allgemeinen Sprachgebrauch werden alle drei Minerale zusammen als Klinoptilolith verwendet.
Je nach Vorkommen besteht das Mineral aus 82–97 Prozent Klinoptilolith. Es kommt in der Natur nie rein vor, sondern immer zusammen mit Cristobalit, Feldspat, Illit, Quarz und Karbonatmineralien. Der meiste im Handel befindliche Klinoptilolith enthält 84–95 Prozent Klinoptilolith, Cristobalit 9 Prozent, Feldspat 5–8 Prozent und Glimmer 2–3 Prozent, dazu Quarz in Spuren.
Empirische Formel: (Na2,K2,Ca,Mg)4Al8Si40O96·24 H2O. In geringen Mengen kann Eisen (bis 1,5 %), Titan (bis 0,05 %), Mangan (bis 0,04 %), Blei (0,017‰), Arsen, Zink, Quecksilber und Cadmium enthalten sein. Chemische Zusammensetzung: SiO2 64,18–75,50 %; Al2O3 10,93–14,80 %; MgO 0,29–1,43 %; K2O 1,24–4,24 %; Fe2O3 0,12–2,45 %; CaO 1,43–11,68 %; Na2O 0,1–2,97 %.
Röntgenstrukturanalyse von Klinoptilolith-Na.
Klinoptilolith kann seine freien Kationen (Na+, K+, Ca2+, Mg2+) gegen andere Metallionen (Ag+, Ba2+, Cd2+, Co3+, Cr3+, Cs+, Cu2+, Fe2+, Hg2+, Li+, Pb2+, Rb, Sr2+, Zn) austauschen, wofür eine größere Selektivität (Cs+ >NH4+ >Pb2+ >K+ >Na+ >Ca2+ >Mg2+ >Ba2+ >Cu2+ >Zn2+) besteht.6 Kristallsystem: monoklin; Härte nach Mohs: 2–3; Dichte: 2,2–2,5; Porosität: 32–40 %; effektiver Porendurchschnitt: 0,4 nm; Wasseraufnahmefähigkeit: 39 %; Farbe: Klinoptilolith ist farblos, kann aber durch Fremdbeimischungen auch braun, rot, dunkel- oder hellgrün sein. Makroskopischer Klinoptilolith ist ein kompaktes Gestein von hellgrüner Farbe (feucht) und mit muschelartigem Schnitt. Das Trockenmaterial ist hellgrau-grün. Klinoptilolith ist stabil gegenüber Säuren und Laugen, thermisch stabil bis 450 °C und nicht wasserlöslich.
Obwohl Zeolithe als Alumo-Schichtsilikate mit den Feldspäten eng verwandt sind, sind die physikalischen Eigenschaften deutlich niedriger ausgeprägt: Zeolithe haben eine Härte von 3,5–5,5; Feldspäte von 6–6,5. Die Dichte der Zeolithe beträgt etwa 2,0–2,4 g/cm3, die der Feldspäte 2,5–2,8 g/cm3.
Vergleichbare Schichtsilikate der 9 EC 40 Montmorillonit-Gruppe sind: Beidellit (Schichtsilikat), Hectorit, Montmorillonit, Nontrolith, Saponit, Swinefordit oder Volkonskoit. Ihr Aufbau ist ähnlich, mit sehr ähnlicher Wirkung.
Schichtsilikate sind Silikate, deren Silikatanionen aus Schichten eckenverknüpfter SiO4-Tetraeder bestehen. Zu dieser Abteilung der Silikate zählen bedeutende Gruppen gesteinsbildender Minerale wie beispielsweise die Glimmer-, Chlorit-, Kaolin- und Serpentingruppe. Die in bindigen Böden allgegenwärtigen und in Sedimentgesteinen verbreiteten Tonminerale sind ebenfalls Schichtsilikate, die auch technisch und alternativmedizinisch wichtig sind. Schichtsilikate sind oft quellfähig und mit ihrer Kationenaustauschkapazität wichtig für die Fruchtbarkeit von Böden.
Schichtsilikate sind die Mineralien der Gruppen 9 EA 05 bis 9 EJ 15 in der Systematik der Mineralien nach Strunz. Die 9 EC Gruppe bilden die Schichtsilikate mit Glimmertafeln, die 9 AC 40 Gruppe ist die Montmorillonitgruppe.
Das wichtigste Mineral der 9 EC 40 Gruppe ist das Montmorillonit, ein Tonmineral und wesentlichster Bestandteil (60–80 Prozent) von Bentonit. Im medizinischen und tiermedizinischen Bereich wird Montmorillonit als Inhaltsstoff für Antidiarrhoika verwendet.
Synthetischer Klinoptilolith
Synthetische Zeolithe kommen unter der Bezeichnung »metallorganische Gerüstverbindungen« (engl. Metal Organic Frameworks = MOF) in den Handel. Das hochporöse Mineral kann mehr als das 1,3-fache seines Gewichtes an Wasser aufnehmen und eignet sich dadurch für thermische Wärmepumpen.
Die ersten synthetischen Zeolithe wurden 1956 in Japan hergestellt. Durch ihren Nutzen für die Industrie wuchs die Anzahl der neuen synthetischen Zeolithe auf über 100 an.
Die jährliche Produktion der Zeolithe soll bei etwa 1 Million Tonnen liegen, die der synthetischen Zeolithe bei 300 000 Tonnen.7
Die Synthese von Klinoptilolith kann – wie bei anderen Zeolithen auch – aus einer Mischung aus Aluminium- und Silizium-Hydroxiden in Natronlauge bei Temperaturen zwischen 50 und 90 Grad Celsius durchgeführt werden. Die Hydroxide können mit Natronlauge frisch aus Aluminiumpulver und Tetraethylorthosilikat getrennt hergestellt und dann vermischt werden. Vorteilhaft ist ein Überschuss von Aluminium.
Die etwa 120 synthetisch hydralisierten Alumosilikate8 gelten jedoch nicht als Minerale.
Die Strukturkommission der IZA ordnet die Zeolithe in Gruppen mit gleichem Bauplan des Alumosilikatgerüstes. Aktuell sind 231 solche Strukturtypen beschrieben worden, von denen jedoch viele nur bei synthetischen Zeolithen gefunden wurden. Für jeden Strukturtyp führen sie ein Kürzel aus drei Buchstaben ein, das sich aus dem Namen des Typminerals ergibt. Strukturtypen, in denen gerüstunterbrechende Anionen wie (OH)-Gruppen auftreten, sind durch ein vorangestelltes »-« gekennzeichnet.
Entstehung
Klinoptilolith kann auf zwölf verschiedene mineralogische Weisen entstehen,9 doch ist hauptsächlich das aus terrestrisch10 abgelagerten vulkanischen Aschen und Tuffen im Handel erhältlich.
Aus diesem Grund wird Klinoptilolith auch verallgemeinert als »vulkanisches Gestein« bezeichnet. Leider wird dies auf vielen Internetseiten vollkommen falsch dargestellt, da die nachträgliche chemische Veränderung nicht berücksichtigt wird.
Klinoptilolith in abgelagerten vulkanischen Aschen und Tuffen
Explosive vulkanische Ereignisse produzieren große Mengen Asche und Tuffe. Die über Land abgelagerten Gesteine werden im Laufe der Zeit durch Witterungseinflüsse verändert. Niederschlagswässer und Grundwasser durchdringen die vulkanischen Ablagerungen. Eindringendes Oberflächenwasser sickert durch die Tuffe und reichert sie mit Natrium, Kalium und Calcium an. Die Sickerwässer lösen die Glasbestandteile in den vulkanischen Aschen auf und schaffen Hohlräume für die Auskristallisation von Zeolithen, wenn die Mächtigkeit der Schichten mehr als 500 Meter beträgt. Im oberen Bereich entsteht Klinoptilolith.
Andere Zeolithe
Obwohl der chemische Aufbau aller Zeolithe sehr ähnlich ist, kommt von den natürlichen Zeolithen nur Klinoptilolith in die allgemeine Verwendung. Das liegt vermutlich daran, dass Zeolithe meist primär entstanden, immer nur in kleineren Vorkommen, oft in Basalt eingelagert, vorliegen und es sich nicht lohnt, diese abzubauen, da der anschließende Trennungs- und Reinigungsvorgang viel zu aufwendig ist.
Der sekundär entstandene und sedimentär abgelagerte Klinoptilolith dagegen kann Hunderte von Metern dick sein und muss in vielen Fundbereichen nur noch gemahlen werden. Ein weiterer Trennungsgang ist oft nicht notwendig.
Andere Zeolithe wie etwa Analcim, Faujasit, Heulandit, Mesolith, Natrolith, Skolezit, Stilbit und Thomsonit sind als Kristallstufen auf Mineralienbörsen erhältlich und werden zwar in der Steinheilkunde eingesetzt, nicht jedoch zur inneren Anwendung.
Paragenese
Aufgrund der pyroklastischen sedimentären Entstehung des Klinoptiloliths kommt er in größeren Schichten meist relativ rein (um 90 Prozent) vor, und diese sedimentäre Entstehung lässt auch kaum eine größere Kristallisation zu.
Anders ist es bei den primären Entstehungsformen, bei denen das Mineral auskristallisiert, oft in Kombination mit Heulandit. In solchen Fällen liegen mehrere kristalline Paragenese-Mineralien mit vor.
Klinoptilolith kann als sekundäres Vulkan-Mineral zusammen mit anderen Blätterzeolithen wie Barrerit, Brewsterit, Epistilbit, Heulandit11, Stellerit und Stilbit vorkommen. In der Natur tritt Klinoptilolith meist zusammen mit Cristobalit, Feldspat, Celadonit12 und Muskovit, teilweise auch Montmorillonit auf. Über eine andere Entstehung kann Klinoptilolith zusammen mit Calcit, Gaylussit, Halit, Hectorit, Opal oder Thennardit vorkommen. Bisher sind keine speziellen Paragenese-Mineralien dieser Entstehungen bekannt, die über die genaue Herkunft des Klinoptiloliths eine Aussage machen können.
Vorkommen
Klinoptilolith ist aus nahezu allen Vulkangebieten der Erde bekannt. Deshalb wird er auch generalisiert als vulkanisches Mineral bezeichnet. Weltweit gibt es über 180 große, bekannte Vorkommen von riesigem Ausmaß, davon alleine über 100 Vorkommen in 21 chinesischen Provinzen. Die bedeutendsten Vorkommen sind in der folgenden Aufzählung aufgeführt.
Argentinien: Chubut; Armenien: Idschewanskoe; Aserbaidschan: Aydag; Äthiopien: Nazret und Boru; Australien: Werris Creeke/New South Wales; Brasilien: Rio Grande del Sul; Bulgarien: Beli Plast; China: Jin-Yun/Zhejiang, Dushijou und Hai-Ling/Heilongjiang; Dänemark: Färöer; Deutschland: Klotzsche/Dresden, Maroldsweisach, Ortenberg, Reichweiler, Römbach, Rühmbach, Saldenburg-Matzersdorf, St. Andreasberg, Vogelsberg Weitendorf, Windischeschenbach; Frankreich: Nantes; Georgien: Dzegvi; Griechenland: Avdella, Kimolos, Poliegos und Samos; Großbritannien: Botallack, Cornwall; Indien: Pashan Hills; Indonesien: Sumatra: Nusa Tenggara, Maluku; West Java: Bogor, Gunung Kidul; Cikembar und Sakabumi; Iran: Eshloghchai/ Miyaneh, Elbrus und Yzad; Island: Moeraki; Italien: Schio; Japan: Chichi-jima, Kamaishi, Kuruma Pass; Kanada: Bay of Fundy, Kamloops Mining District, Mont Saint-Hilaire; Kuba: Castilla, Tasajeras, Las Pulgas und Caimanes; Mexiko: Yucatan; Neuseeland: Moeraki, Whitianga; Nordkorea: Han Zin und Pho Ha; Norwegen: Narvik; Österreich: Bad Gleichenberg, Ybbs a. d. Donau, Kapfenberg, Leibnitz, Weitendorf; Philippinen: Mangatarem; Polen: Dynow; Rumänien: Chilioara; Russland: Kaukasus, Sibirien; Schweiz: Gibelsbach; Slowenien: Zaloska Gorica; Slowakei: Nižný Hrabovec; Spanien: Las Negras, Nijar; Südafrika: Heidelberg-Riversdale/Cape Province und Hluhluwe/KwaZulu-Natal; Südkorea: Guryongpo; Tschechien: Honcova hurca, Skotnice; Türkei: Emet, Kestelek, Manisa Gördes; Turkmenistan: Aydak, Bad Khyz; Ukraine: Sokirnitsa; Ungarn: Nyiri, Ratka; USA: Kalifornien (Boron, Owl Canyon), Nevada (Antelope Springs Distrikt), Neu-Mexiko (Winston), Oregon (Cape Madras, Cape Lookout, Durkee, Swayze Creek), South Dakota, Utah (Thomas Range), Washington (Altoona, Rock Island Dam), Wyoming (Hoodoo Mt., Yellowstone National Park); Zypern: Troulli.
Produktion
Der Abbau von natürlichen Zeolithen verlief in den letzten dreißig Jahren mehr oder weniger langsam. Mitte der 1970er Jahre lag die weltweite Produktion bei nur einigen Hundert Tonnen pro Jahr. Mitte der 1980er Jahre überschritt die Produktion die 10 000-Tonnen-Grenze. Durch eine neue Anwendung als Tierstreu konnte die Fördermenge bis 1993 auf 46 100 Tonnen erhöht werden. Das wichtigste Wachstumssegment wird in Zukunft der Waschmittelmarkt und die Bauindustrie im asiatisch-pazifischen Raum sein. Die aktuelle jährliche Produktion von natürlichen Zeolithen liegt bei ca. 4 000 000 Tonnen.13
Die Gesamtmenge der jährlich abgebauten Menge an Klinoptilolith betrug 3 400 000 Tonnen14; davon in
China: | 2 500 000 t | Ungarn: | 15 000 t |
Kuba: | 550 000 t | Slowenien: | 12 000 t |
Japan: | 150 000t | Südafrika: | 10 000 t |
Bulgarien: | 45 000 t | Italien: | 4000 t |
USA: | 40 000 t | Georgien: | 4000 t |
Türkei: | 40 000 t | Kanada: | 4000 t |
5 Sammelbezeichnungen für Minerale aus der Gruppe der Silikate, die sich aus den Grundbausteinen SiO4-Tetraeder und AlO4-Tetraeder aufbauen. Aluminium kann sich hier chemisch ähnlich verhalten wie Silizium.
6 Miles hat in einer weitergehenden Untersuchung zur Kationenaustauschkapazität von Zeolithen folgende Selektivitätsreihe für Klinoptilolith festgestellt: Cs >Rb >NH4 >Sr >Na >Ca >Fe >Al >Mg >Li.
7 Öko-Invest, Nr. 571/15, 2015.
8 Alumosilikate sind Minerale und chemische Verbindungen aus der Gruppe der Silikate, deren Grundgerüst aus Silizium- und Aluminiumatomen besteht.
9 Mehr dazu im Anhang, Seite 173f.
10 = an Land; Gegensatz: submarin = unter Wasser.
11 Viele der aus Indien stammenden Heulandite sind Mischungen aus Heulandit und Klinoptilolith.
12 Seladonit K(Mg, Fe2+)(Fe3+, Al)[(OH)2 | Si4O10] findet sich oft innig verwachsen mit Heulandit, Klinoptilolith oder Stilbit und sorgt bei diesen normalerweise farblosen Mineralen für eine meergrüne Färbung.
13 www.mineralienatlas.de/lexikon/index.php/Mineralienportrait/Zeolithe/Lagerst%E4tten%20und%20Bergbau
14 1988: 1 000 000 Tonnen (Newsam).