Читать книгу Industrial Arts Design - William H. Varnum - Страница 11

Оглавление

Two Horizontal Space Divisions

Rule 2a. If the primary mass is divided into two horizontal divisions, the dominance should be either in the upper or the lower section. Plate 7 shows this division of the primary mass—the simplest division of the space. A space divided just half way from top to bottom would be monotonous and expressive of the ratio of one to one. This arrangement as we have already discovered in the second chapter is not conducive to good design.

By the stated rule, 2a, the varied adjustment of this double horizontal division affords all possible latitude for constructive purposes. It is better to place the division in such a manner that the upper division (or lower) will not appear pinched or dwarfed by comparison with the remaining area. Thus a ratio of one to three, or three to five, or five to eight is better than a ratio of one to one or one to eighteen, but there is no exact or arbitrary ruling on this point.

Two Horizontal Divisions in Wood

Figure 8 illustrates two horizontal divisions in wood construction and also the freedom of choice as to exact proportions. The eye will be found a good judge of the proper spacings subject to the limitations already mentioned.

Plate 9

It is best to keep the design within the limits of two horizontal space divisions in designing cylindrical clay forms, particularly in the elementary exercises. Enough variety will be found to make pleasing arrangements, and the technical results obtained by two divisions are much better than those obtained from a greater number of divisions.

Two Horizontal Divisions in Clay

Figures 14, 15, and 16, Plate 9, are clay forms with the dominance placed in either the upper or lower portion of the primary mass. Figure 13 has been used to illustrate the fact that horizontal space division principles are applicable to any material. The horizontal divisions in Figure 13 are due to structural needs. A horizontal line carries this division across to Figure 14, a clay vase. The horizontal division line now becomes the one which marks the widest part of the vase. It gives the same relation between the top and bottom horizontal spaces as in Figure 13. It marks an aesthetic point in the design of the vase, or a variation of the contour, introduced by reason of its effect upon the beauty of the vase, not called for by the needs of actual service.

A musical composition is often played in an orchestra first by the wood instruments, taken up and repeated by the brasses, then by the strings, and finally played as an harmonious whole by the entire orchestra. There is a close parallel in Figure 12, an adaptation of one of Gustav Stickley's designs. The two-division rule is used in the relations of the plaster and wainscoting; again in the plaster over, and the cement or tile around the fireplace. It is repeated in the arrangement of the copper and cement of the fireplace facing and hood and in the door panels. By repeating again and again similar space divisions the wall space becomes a unified and harmonious whole. Variety is secured by the introduction of three horizontal divisions in the details of the wainscoting. This method of repeating similar space divisions is called "echoing" and is one of the most effective means known for securing the effect of unity.

Plate 10

Two Horizontal Divisions in Metal

The horizontal subdivisions in metal are usually made for service. Figures 17, 18, and 19, Plate 10, are examples of such divisions. The location of the clock face in Figure 18 calls for the placing of its horizontal axis in accordance with Rule 2a. The lamp in Figure 19 shows an instance where the entire design once divided by Rule 2a, may be again subdivided into a similar series of divisions. This arrangement is quite similar to the system of repetitions seen in Figure 12 and termed "echoing" the original divisions.

Three Horizontal Space Divisions

Rule 2b. If the primary mass is divided into three horizontal divisions or sections, the dominance should be placed in the center section with varying widths in the upper and lower thirds.

When it becomes necessary to divide the primary mass into more than two sections the designer's problem becomes more difficult. With the addition of a greater number of horizontal divisions there is a manifest tendency for the design to become cut up into so many small sections that the simplicity of the whole mass is lost. Here, as elsewhere, that principle which we call unity or the quality of "holding together" is necessary and should be the constant test of the design. The instant any part of the design seems to fly apart from the main mass it becomes the designer's duty to simplify the design or pull the parts together and thus restore the lost unity.

As a restriction against loss of unity it is necessary to group all of the minor horizontal divisions into a system of two or three large horizontal divisions. Referring to Rule 2b, it is seen that when three divisions are used, it becomes the practice to accentuate the center section by making it larger. This arrangement is designed to give weight to the center portion and by this big stable division to hold the other subdivisions together and in unity.

Three Horizontal Divisions in Wood

Two horizontal masses and one vertical mass shown in Figures 9, 10, and 11, Plate 8, illustrate the application of this three-division rule to wood construction. It is seen that the construction of rails, doors, and shelves is responsible for the fixing of all of these divisions. It may also be seen that three divisions are applicable to either the vertical or the horizontal primary mass. Figure 10 illustrates the violation of this type of spacing at the point A, where the shelves are no more pleasingly arranged than the rounds of a ladder. Later on we shall be able to rearrange these shelves in a pleasing manner but at present it is better to relieve the monotony by omitting the center shelf. This applies the three division rule to the satisfactory appearance of the desk at B.

Similar monotony in spacing is seen in the screen, Figure 11. The correction in B appeals at once as a far more satisfactory arrangement than that secured by placing the cross bar half way up as in A. There are no infallible rules for this readjustment beyond those already stated. The eye must in part be depended upon to guide the artistic sense aright.

Three Horizontal Divisions in Clay

It is suggested that it is desirable to keep clay forms within the limitations of two divisions. Rectangular posts, pedestals, and other vertical forms in cement may be developed by the application of Rule 2a or 2b, if care is taken to group all minor divisions well within the limitations of these rules.

The statement just made in reference to simplified groupings is illustrated in the candlestick and cup in Figures 20 and 21, Plate 10. The construction based upon the three functions performed by the cup, the handle, and the base, suggests the use of these horizontal divisions. The minor curves have been subordinated to, and kept within, these three divisions. The final result gives a distinct feeling of unity impossible under a more complex grouping. The Greek column will afford an architectural illustration of a similar grouping system.

Three Horizontal Divisions in Metal

The lathe bed of Figure 22 shows one of innumerable examples of space violations in the industrial arts. A slight lowering of the cross brace would add materially to the appearance and strength of the casting. Figure 23 is a copper box with the following more or less common faults of design: commonplace ratio of length and width (2:1) partially counteracted, however, by a more pleasing ratio of the vertical dimension, equal spacing in the width of cover of box and box body, and equal spacing of the hinges of the box from the ends of the box and from each other. By applying the two and three horizontal division rules these errors may be avoided.

Freehand Curves

Figure 24 shows a low bowl with a compass curve used in designing the contour. This has brought the widest part of the design in the exact center of the bowl which makes it commonplace. In addition to this the top and bottom are of the same width, lacking variety in this respect. Correction is readily made by applying a freehand curve to the contour, raising or lowering the widest point (F), at the same time designing the bottom either larger or smaller than the top.

Industrial Arts Design

Подняться наверх