Читать книгу Geochemistry - William M. White - Страница 68
2.10.3 Entropies of reaction
ОглавлениеSince
(2.62)
and
(2.57)
then at constant pressure
(2.116)
Thus, at constant pressure, the entropy change in a reversible reaction is simply the ratio of enthalpy change to temperature.
Entropies are additive properties and entropies of reaction can be calculated in the same manner as for enthalpies, so Hess's law applies:
(2.117)
The total entropy of a substance can be calculated as:
(2.118)
Table 2.2 Standard state thermodynamic data for some important minerals.
Phase/ Compound | Formula | kJ/mol | SO J/K-mol | kJ/mol | cc/mol* | a | CP b | c |
H2Og | H2O (gas) | −241.81 | 188.74 | −228.57 | 24789.00 | 30.54 | 0.01029 | 0 |
H2Ol | H2O (liquid) | −285.84 | 69.92 | −237.18 | 18.10 | 29.75 | 0.03448 | 0 |
CO2 | CO2 | −393.51 | 213.64 | −394.39 | 24465.10 | 44.22 | 0.00879 | 861904 |
Calcite | CaCO3 | −1207.30 | 92.68 | −1130.10 | 36.93 | 104.52 | 0.02192 | 2594080 |
Graphite | C | 0 | 5.740 | 5.298 | ||||
Diamond | C | 1.86 | 2.37 | 3.417 | ||||
Aragonite | CaCO3 | −1207.21 | 90.21 | −1129.16 | 34.15 | 84.22 | 0.04284 | 1397456 |
α-Qz | SiO2 | −910.65 | 41.34 | −856.24 | 22.69 | 46.94 | 0.03431 | 1129680 |
β-Qz | SiO2 | −910.25 | 41.82 | −856.24 | 60.29 | 0.00812 | 0 | |
Cristobalite | SiO2 | −853.10 | 43.40 | −853.10 | 25.74 | 58.49 | 0.01397 | 1594104 |
Coesite | SiO2 | −851.62 | 40.38 | −851.62 | 20.64 | 46.02 | 0.00351 | 1129680 |
Periclase | MgO | −601.66 | 26.94 | −569.38 | 11.25 | 42.59 | 0.00728 | 619232 |
Magnetite | Fe3O4 | −1118.17 | 145.73 | −1014.93 | 44.52 | 91.55 | 0.20167 | 0 |
Spinel | MgAl2O4 | −2288.01 | 80.63 | −2163.15 | 39.71 | 153.86 | 0.02684 | 4062246 |
Hematite | Fe2O3 | −827.26 | 87.61 | −745.40 | 30.27 | 98.28 | 0.07782 | 1485320 |
Corundum | Al2O3 | −1661.65 | 50.96 | −1568.26 | 25.58 | 11.80 | 0.03506 | 3506192 |
Kyanite | Al2SiO5 | −2581.10 | 83.68 | −2426.91 | 44.09 | 173.18 | 0.02853 | 5389871 |
Andalusite | Al2SiO5 | −2576.78 | 92.88 | −2429.18 | 51.53 | 172.84 | 0.02633 | 5184855 |
Sillimanite | Al2SiO5 | −2573.57 | 96.78 | −2427.10 | 49.90 | 167.46 | 0.03092 | 4884443 |
Almandine | Fe3Al2Si3O12 | −5265.50 | 339.93 | −4941.73 | 115.28 | 408.15 | 0.14075 | 7836623 |
Grossular | Ca3Al2Si3O12 | −6624.93 | 254.68 | −6263.31 | 125.30 | 435.21 | 0.07117 | 11429851 |
Albite | NaAlSi3O8 | −3921.02 | 210.04 | −3708.31 | 100.07 | 258.15 | 0.05816 | 6280184 |
K-feldspar | KAlSi3O8 | −3971.04 | 213.93 | −3971.4 | 108.87 | 320.57 | 0.01804 | 12528988 |
Anorthite | CaAl2Si2O8 | −4215.60 | 205.43 | −3991.86 | 100.79 | 264.89 | 0.06190 | 7112800 |
Jadeite | NaAlSi2O6 | −3011.94 | 133.47 | −2842.80 | 60.44 | 201.67 | 0.04770 | 4966408 |
Diopside | CaMgSi2O6 | −3202.34 | 143.09 | −3029.22 | 66.09 | 221.21 | 0.03280 | 6585616 |
Enstatite | MgSiO3 | −1546.77 | 67.86 | −1459.92 | 31.28 | 102.72 | 0.01983 | 2627552 |
Wollatonite | CaSiO3 | −1632.0 | 82.03 | −1656.45 | 39.93 | 139.58 | 0.00236 | 1401200 |
Forsterite | Mg2SiO4 | −2175.68 | 95.19 | −2056.70 | 43.79 | 149.83 | 0.02736 | 3564768 |
Clinozoisite | Ca2Al3Si3O12(OH) | −68798.42 | 295.56 | −6482.02 | 136.2 | 787.52 | 0.10550 | 11357468 |
Tremolite | Ca2MgSi8O22(OH)2 | −12319.70 | 548.90 | −11590.71 | 272.92 | 188.22 | 0.05729 | 4482200 |
Chlorite | MgAl(AlSi3)O10(OH)8 | −8857.38 | 465.26 | −8207.77 | 207.11 | 696.64 | 0.17614 | 15677448 |
Pargasite | NaCa2Mg4Al3Si8O22(OH)2 | −12623.40 | 669.44 | −11950.58 | 273.5 | 861.07 | 0.17431 | 21007864 |
Phlogopite | KMg3AlSi3O10(OH)2 | −6226.07 | 287.86 | −5841.65 | 149.66 | 420.95 | 0.01204 | 8995600 |
Muscovite | KAl3Si3O10(OH)2 | −5972.28 | 287.86 | −5591.08 | 140.71 | 408.19 | 0.110374 | 10644096 |
Gibbsite | Al(OH)3 | −1293.13 | 70.08 | −1155.49 | 31.96 | 36.19 | 0.19079 | 0 |
Boehmite | AlO(OH) | −983.57 | 48.45 | −908.97 | 19.54 | 60.40 | 0.01757 | 0 |
Brucite | Mg(OH)2 | −926.30 | 63.14 | −835.32 | 24.63 | 101.03 | 0.01678 | 2556424 |
Data for the standard state of 298.15 K and 0.1 MPa. ΔHf is the molar heat (enthalpy) of formation from the elements; S° is the standard state entropy; V is the molar volume; a, b and c are constants for the heat capacity (Cp) computed as: Cp = a + bT − cT–2 J/K-mol.
where S0 is the entropy at 0 K (the configurational, or third law entropy) and ΔSφ is the entropy change associated with any phase change. Compilations for S298 are available for many minerals. Table 2.2 lists some heat capacity constants for the power series formula as well as other thermodynamic data for a few geologically important minerals. Example 2.6 illustrates how entropy and enthalpy changes are calculated.