Читать книгу Physics - Willis E. Tower - Страница 18
(2) Molecular Motion in Liquids
Оглавление18. Diffusion of Liquids.—From the evidence given in Arts. 14–17, (a) of diffusion of odors, (b) of the continued expansion of air in the air pump, and (c) of the pressure exerted by a gas in all directions, one may realize without difficulty that a gas consists of small particles in rapid motion. Let us now consider some of the evidence of molecular motion in liquids. If a little vinegar is placed in a pail of water, all of the water will soon taste sour. A lump of sugar in a cup of tea will sweeten the entire contents. This action is somewhat similar to the diffusion of gases but it takes place much more slowly. It is therefore believed that the motion of liquid molecules is much slower than that of gas molecules.
Again, if a dish of water is left standing in the open air in fine weather, within a few days the dish will become dry though no one has taken anything from it. We say the water has evaporated. What was liquid is now vapor. If we were to observe carefully any dish of water we would find that it continually loses weight on dry days. That is, there is a constant movement of the molecules of water into the air. This movement of the molecules is explained as follows. There appear to be in the dish of water some molecules that by moving back and forth acquire a greater velocity than their neighbors; when these reach the surface of the liquid, some vibration or movement sends them flying into the air above. They are now vapor or gas molecules, flying, striking, and rebounding like the air molecules. Sometimes on rebounding, the water molecules get back into the water again. This is especially apt to happen when the air is damp, i.e., when it contains many water molecules. Sometimes the air over a dish becomes saturated, as in the upper part of a corked bottle containing water. Although molecules are continually leaving the surface of the water they cannot escape from the bottle, so in time as many molecules must return to the water from the space above as leave the water in the same time. When this condition exists, the air above the water is said to be saturated. On very damp days the air is often saturated. The explanation above shows why wet clothes dry so slowly on such a day (See Arts. 166–7 on Saturation.)
19. Cooling Effect of Evaporation. We have seen that warming a gas increases its volume. This expansion is due to the increased motion of the warmed molecules. Now the molecules that escape from a liquid when it evaporates are naturally the fastest moving ones, i.e., the hottest ones. The molecules remaining are the slower moving ones or colder molecules. The liquid therefore becomes colder as it evaporates, unless it is heated. This explains why water evaporating on the surface of our bodies cools us. In evaporating, the water is continually losing its warm, fast moving molecules. The cooling effect of evaporation is, therefore an evidence of molecular motion in liquids.
Fig. 8.—Osmosis Shown by carrot placed in water.
20. Osmosis.—If two liquids are separated by a membrane or porous partition, they tend to pass through and mix. This action is called osmose, or osmosis.
Such a movement of liquid molecules in osmosis may be illustrated by filling a beet or carrot that has had its interior cut out to form a circular opening (see Fig. 8) with a thick syrup. The opening is then closed at the top with a rubber stopper through which passes a long glass tube.
If the carrot is immersed in water, as in Fig. 8, a movement of water through the porous wall to the interior begins at once. Here, as in the experiment of the hydrogen and air passing through the porous cup, the lighter fluid moves faster. The water collecting in the carrot rises in the tube. This action of liquids passing through porous partitions and mingling is called osmosis.
Gases and liquids are alike in that each will flow. Each is therefore called a fluid. Sometimes there is much resistance to the flow of a liquid as in molasses. This resistance is called viscosity. Alcohol and gasoline have little viscosity. They are limpid or mobile. Air also has some viscosity. For instance, a stream of air always drags some of the surrounding air along with it.