Читать книгу Применение антимикробных полимерных материалов в медицине и при упаковке продуктов питания - Юрий Степанович Почанин - Страница 6

ГЛАВА 2. АНТИМИКРОБНЫЕ ДОБАВКИ ДЛЯ ПОЛИМЕРОВ

Оглавление

2.1. Органические добавки

Химические органические добавки являются продуктами органического синтеза целлюлозных соединений или переработки отходов лесохимии, целлюлозно-бумажной, химической и нефтехимической промышленности, агрохимии и др.

Органические добавки, имеющие в своем составе металлоорганический класс молекул, полагаются на кочующие молекулы с целью оказания антимикробного действия на поверхность полимера. Стоит только диспергировать их в пластик, как они начнут мигрировать из полимерной структуры на полимерную поверхность, где будет образовываться антимикробная «пленка». Миграция происходит из-за того, что молекулы понижают градиент концентрации в пластике. Миграция происходит под воздействием наследственных несовместимых различий между органическими антимикробными соединениями и полимерными субстратами, в которых они диспергированы. В результате полученная на полимерной поверхности пленка пополняется за счет добавок, находящихся внутри субстрата всякий раз, когда поверхность вытирают или моют или когда антимикробный материал гибнет в окружающей среде.

Преимущество этого способа антимикробного действия в том, что он может обладать очень высокой степенью активности, а кочующие молекулы могут очень быстро взаимодействовать с огромным количеством микробов. Однако это в сильной мере влияет на длительность активности, так как добавки вымываются со временем, оставляя небольшой резерв внутри полимера. Размер добавки и выбор органической добавки зависят от требуемого уровня эффективности и нужной продолжительности действия.

С коммерческой точки зрения органические технологии больше подходят изделиям одноразового использования, которые имеют более короткий срок службы, в сравнении с продуктами, обладающими большим сроком службы и более вредные для окружающей среды.   Дополнительные ограничения заключаются в том, что органическим добавкам не разрешается напрямую контактировать с пищевыми продуктами, в первую очередь, из-за мобильности и растворимости этих добавок в пищевых имитаторах. Что касается органических систем, следует также учитывать воздействие температуры во время процесса.  При повышении температуры органические молекулы становятся более подвижными, что приводит в результате к их чрезмерным потерям с поверхности пластика. Также органические антимикробные соединения часто имеют термодеструкционные температуры похожие с температурой обработки полимера.  Полимеры, такие как полихлоридвинил и некоторые низкотемпературные полиолефины, больше всего подходят для этих добавок. Также следует учитывать температуру окружающей среды, при которой будут использоваться конечные продукты, так как это может повлиять на скорость миграции и срок жизни активных систем.

Мягкие полихлоридвиниловые продукты являются хорошим примером того, как органические системы успешно защищают от микробиологического распада, а именно черных и розовых пятен. В действительности сам по себе полихлоридвинил может увеличить число микробов, и этот эффект усиливается, когда его используют для изделий, используемых во влажной среде, например, водонепроницаемые материалы.

Самыми известными металлоорганическими антимикробными соединениями являются материалы, содержащие мышьяк, такие как оксибисфеноксиарсин (OBPA).  Несмотря на то, что эти добавки очень эффективны и экономичны, их использование ограничено по экологическим соображениям и их долгосрочной токсичности. В результате, спрос на химические соединения, не содержащие мышьяк, такие как неметаллические изотиазолины семейства биоцидов и другие типы, а именно триклозан (также известный как хлорированный дифинил) стремительно растет. В настоящее время предсказывают, что в Европе рост достигнет значения в пределах от 10 до 20 процентов в год.

Из органических соединений антимикробным действием обладает этиловый спирт, фенол, крезол, формальдегид и др. Этиловый спирт (50-70%) оказывает более сильное действие, чем концентрированный. Широко используемый в санитарно- бактериологической практике ароматический спирт фенол, или карболовая кислота, взаимодействует с цитоплазматической мембраной, вызывая растворение липидов и нарушая этим самым ее основное свойство – полупроницаемость. Вегетативные клетки бактерий быстро гибнут от 3-5% раствора фенола. Очень ядовит также формальдегид. Он вступает во взаимодействие с аминными группами пептидов и аминокислот, связывает их и в результате нарушает физиологическую деятельность клетки.


К числу органических соединений, обладающих антимикробным действием, относится и ряд веществ, полученных путем химического синтеза. Наибольшей известностью пользуются сульфамидные препараты, применяемые в химиотерапии для уничтожения патогенных бактерий. По структуре формулы сульфамиды весьма сходны с важным клеточным метаболитом – парааминобензойной кислотой (ПАБК).

Сульфамидные препараты выступают конкурентами ПАБК и в случае избытка их в организме включаются (вместо ПАБК) в комплекс фолиевой кислоты. Однако функции ПАБК они выполнять не могут. Ферментативные реакции, зависящие от наличия фолиевой кислоты, расстраиваются, нарушается жизнедеятельность клетки. Эти вещества, являющиеся конкурентами или антагонистами естественных метаболитов клетки, получили название антиметаболитов. Все они обладают антимикробным действием.

Органические системы представляют собой низкомолекулярные, легкомигрирующие соединения, иногда содержащие ион металла. Они несовместимы с полимером, поэтому мигрируют на поверхность изделия и вступают во взаимодействие с микроорганизмами. Добавки постепенно вымываются с поверхности изделия и защитный слой восстанавливается за счёт запаса в массе изделия.

Номенклатура применяемых добавок довольно широка, около 20-и производителей выпускают порядка 80-и наименований антимикробных добавок. Среди основных соединений можно назвать:

– 10,10–оксибисфеноксиарсин (ОВРА);

– трихлоргидроксидифенилэфир (Triclosan);

– n-октил-изотиазолинон (OIT);

– 4,5-дихлор-2-n-октил-4-изотриазолин-3-он (DCOIT);

– меркаптопиридина оксид (Рyrithione);

– бутил-бензтиазолинон (Butyl-BIT);

– N-фтордихлорметилтиофталимид (Sanitized PL);

– металлсодержащие биостабилизаторы – оловоорганические соединения и соединения серебра;

– полимеры, обладающие антимикробным действием (полифосфонаты, поли-N-галогенпиридин, поли (стирол-дивинилбензол) сульфамид).

В настоящий момент на рынке биостабилизаторов бесспорное лидерство за соединениями мышьяка, а точнее 10, 10–оксибисфеноксиарсином (ОВРА). За этим соединением остаётся около 70% рынка, что обусловлено оптимальным соотношением цена/качество.

В настоящее время появляется тенденция к использованию минимально токсичных соединений, и всё больше применяются антимикробные агенты, не содержащие мышьяка – например, изотиазолины (более эффективны, чем ОВРА), трихлорметилфталамиды или неорганические соединения серебра и цинка (в основном, цеолиты).


В упаковочном производстве необходимо применять новые упаковочные материалы с избирательной проницаемостью, создающие барьер на пути излишне интенсивного газо- и влагообмена, поступления микрофлоры извне, препятствующие развитию нежелательных микроорганизмов на упаковываемых изделиях.

Наиболее дешевым бактерицидным упаковочным материалом может служить многослойная полиэтиленовая пленка, полученная методом экструзии с сорбционным материалом на основе кремнийорганического сорбента, модифицированного медью. Эта многослойная полиэтиленовая пленка используется для паллетирования грузов на поддонах. Она состоит из основного слоя и содержит в качестве основного компонента линейный полиэтилен и, по меньшей мере, одного слоя адгезивного материала, несовместимого с линейным полиэтиленом. Многослойная полиэтиленовая пленка выполнена в форме рукава.

Более дорогим бактерицидным упаковочным материалом может служить полиэтилен, в отверстия которого внедрены бактерицидные компоненты (например, наночастицы серебра или меди). Способ получения бактерицидного материала включает формирование необходимой формы из полимерной основы, формирование отверстий в полимерной основе за счет облучения высокоэнергетическими частицами, заполнения отверстий, бактерицидными компонентами. Таким образом, бактерицидные компоненты бактерицидного материала, в котором упакованы любые продукты питания или медицинские средства, будут препятствовать процессу развития микроорганизмов и бактерий. Бактерицидный материал может быть изготовлен следующим образом. В качестве полимерной основы используют полиэтиленовая пленка, толщиной 30 мкм. Она располагается в вакуумной камере и облучается пучком ионов ксенона с энергией 1,2 МЭВ/нуклон в течение 10 минут. Благодаря этому в пленке создаются несквозные отверстия (для прохождения пленки насквозь энергия нуклонов должна быть большей), диаметром до 30 нм. Полиэтиленовая пленка располагается в ванне с водной суспензией наночастиц серебра (диаметр наночастицы серебра также должен быть менее 30 нм) на 15 минут. Положительный и отрицательный электроды ванны изготовлены в виде пластин, которые располагаются параллельно пленке, со стороны с отверстиями и без. Наночастицы серебра двигаются от положительного электрода к отрицательному и попадают в отверстия полиэтиленовой пленке, где и осаждаются. полимерный композит антисептический канифоль

Известна бактерицидная композиция, содержащая в качестве активных компонентов йодсодержащие органические соединения, а также вспомогательные вещества, в которую входят:

– оксиэтиленированный жирный спирт, содержащий 8 молей оксида этилена;

– повторно сублимированный металлический йод;

– пропантриол или глицерин для устранения вяжущего действия свободного йода, который, возможно, содержится в композиции;

– моноглицерид полиоксиэтиленированной жирной кислоты с целью снизить величину поверхностного натяжения среды, в которой он действует, в результате чего достигаются быстрое увлажнение клеточной стенки в случае бактерий или разрушение различных белков, которые могут образовывать вирусную капсулу;

– этиленгликоль с целью предотвратить вступление свободного йода в реакцию с другими компонентами бактерицидной композиции.

Применение антимикробных полимерных материалов в медицине и при упаковке продуктов питания

Подняться наверх