Читать книгу The Smart Cyber Ecosystem for Sustainable Development - Группа авторов - Страница 25

1.6 IoT Applications

Оглавление

With the collaboration and co-operation of other technology involved with IoT, it has vast scope in various IoT-based applications such as Smart Home, Smart Healthcare, Smart Transportation, Smart Asset Management, and Smart Farm [26]. Such applications will create a paradigm shift in the traditional lifestyle of human beings and that is why nowadays the popularity of IoT is much more than other existing technologies. Some of the well-known IoT applications are as given below.

Smart Home

Smart home as an IoT application contains features like integration of various IoT-enabled devices, provides securities amongst them, and enables networking using central controlled devices and its related security features that adapt a traditional home into technically enriched sophisticated home. Such IoT-enabled devices monitor some important aspects for home such as remote air conditioning, heating, and ventilation management using smart phones. It also performs the operation management by communicating with different IoT-enabled devices of home like IoT-enabled fan, tube light, oven, and washing machine.

Smart Healthcare

Such smart healthcare applications are also known as the Internet of Medical Things (IoMT). Its popular applications are “Remote Health Monitoring” and “Emergency Notifications System” [27]. There are many devices that can monitor the number of health parameters of human beings. IoT-enabled devices, by collaborating communication with medical manifesto, can monitor the heartbeat and blood pressure and, with proper medical surgery, can also act as pacemaker. “Smart Bed” is an instrumental bed which maintains a patient’s regular checkups without any human intervention (nurse). Moreover, such smart beds can also be connected using smart sensors that can acquire information from the patient end and analyze and transmit them to smart home objects connected to this system. To monitor the well-being of senior citizens, smart sensors can also be medically equipped within living spaces of human beings.

Smart Transportation

In different aspects of the transportation system, IoT is helpful in doing things more smartly than done earlier. IoT-enabled devices can be equipped with vehicles, infrastructures, drivers and other human beings involved in transporting activities and can play the role of a monitor or supervisor. So, logistics, smart traffic control, vehicle control, and fleet management are several well-known applications of the Smart Transportation segment. During transportation of any goods container, it can be handled by monitoring the real-time location of the container, the status of the container (open/close), and how the container can be handled throughout the journey. So, such smart tracking can provide security features to that container and thereby minimize the theft risk and maximize the possibilities of recovering stolen material.

Smart Asset Management

Asset management is one the oldest problems faced by many industries. Asset is basically an instrument or a device that may be cheap or priceless, that may be located indoor or outdoor. So, in case of an emergency, it is often a problem finding/tracking its location in the organization. IoT can provide solutions toward pinpointing the asset’s exact location within a short span of time. For example, in hospitals, there are many assets such as medical instruments, scanning machines, and healthcare monitors loosely coupled with each other. So, by using IoT-enabled solutions, one can correlate them technically and upload the data on cloud to monitor its future activities such as scheduled maintenance without intervention of human beings.

There are many other domains too in which IoT can be applied to operate things better and smarter such as Smart Retailing, Smart Inventory Management, Smart Tracking, and Smart Cargo Management. In industries, the IIoT can be applied. That is one of the reasons for Industrial Revolution 4.0. So, in the context of industries IoT, we have other broad domains in which IoT can be served. Such domains are Smart Factory, Food Industries, Plant securities and safety, Oil Chemical and Pharmaceutical Industries, Unmanned Auto Vehicle industries (UAVs), and many more. The domain of agriculture also utilizes IoT facilities in different sub-applications and converts the agriculture farm into a Smart Farm. So, in the next sub-topic, we shall discuss how premium facilities can be developed in traditional farms and how one can use IoT technology to convert a farm into a Smart component of sustainable agriculture.

Smart Farm—A Paradigm Shift in Sustainable Agriculture

Smart Farm is an IoT application that gives leverage to the farmer community to do many farm level tasks using IoT without human intervention or minimal human intervention. Smart Farm consists of a variety of functions such as water level management, soil fertility management, pesticides control, and many more. IoT-enabled devices can be useful to fulfill the basic communication functionality that result into performing smart work in the agriculture domain at farm level.

In future, smart farms can have the facilities such as soil moisture and water level monitoring, automated irrigation system, automated sowing and weeding system, automated organic waste management system, automated environment monitoring system, and soil micronutrients monitoring system as shown in Figure 1.7.

 ✓ Out of these systems, IIT Kharagpur, India, developed an automated irrigation system, “AgriSens” that focused on Smart Water Management using IoT [29]. AgriSens provides automatic irrigation and remote monitoring and controlling. Architecture of this system has basically three layers: sensing layer, processing layer, and application layer. Sensing layer deals with functionalities of different sensors such as soil moisture sensor and water level sensor that receive information from surrounding and pass to its cluster head. Such received information transfer from cluster head to remote server for further processing and analytics will be done at different application sides on such processed data to get the ultimate result. Such analytics results decide what should be the next step to follow and accordingly sends signal to/stop signal from actuators (e.g., water pump motor) to actuate (start/stop).


Figure 1.7 Future smart farm [28].

 ✓ In other agriculture domains, IoT applications such as environment monitoring systems will sense the environmental data such as level of carbon dioxide, level of nitrogen, and level of oxygen in the surroundings and alert if it goes beyond the lower level. At this time, it checks crop-based requirements accordingly and informs the remotely existed farmer community so that they can take action accordingly.

 ✓ In automated seed sowing systems, there are sensor mounted tractors that can monitor the shift of the tractor and accordingly dig soil and another sensor pushes seed into the soil. So, using such sensor-based sowing automation, the farmer community can get proper inline and depth seed sowing that can be easily maintained during its production phase and thereby increasing the overall production of the related crop.

 ✓ Soil fertility monitoring systems will basically consist of different sensors that can sense different micronutrients from soil. In its processing part, it compares with related crop ideal requirements, and if a gap is found beyond threshold, it sends an alert to a remotely existing famer on his smart device.

So, by utilizing IoT applications in the agriculture domain, specifically at farm level as mentioned by above various IoT-based applications, our traditional farm can act as a Smart Farm that helps the farmer community to increase crop production quality and quantity and thereby achieve their overall goal of profit making with less sweat.

The Smart Cyber Ecosystem for Sustainable Development

Подняться наверх