Читать книгу Magma Redox Geochemistry - Группа авторов - Страница 19

REFERENCES

Оглавление

1 Aiuppa, A., Shinohara, H., Tamburello, G., Giudice, G., Liuzzo, M., & Moretti, R. (2011). Hydrogen in the gas plume of an open‐vent volcano, Mount Etna, Italy. Journal of Geophysical Research: Solid Earth, 116(B10). https://doi.org/10.1029/2011JB008461

2 Allanore A. (2013). Electrochemical engineering of anodic oxygen evolution in molten oxides. Electrochimica Acta, 110(2013), 587–592.

3 Allanore A. (2015). Features and challenges of molten oxide electrolytes for metal extraction. Journal of the Electrochemical Society, 162, E13–E22. https://doi.org/10.1149/2.0451501jes

4 Appelo C. A. J., & Postma, D. (1996). Geochemistry, groundwater and pollution. Rotterdam: Balkema. 536 pp.

5 Armstrong, K., Frost, D. J., McCammon, C. A., Rubie, D. C., & Ballaran, T. B. (2019). Deep magma ocean formation set the oxidation state of Earth’s mantle. Science, 365(6456), 903–906. doi: 10.1126/science.aax8376

6 Baker, D. R., & Moretti, R. (2011). Modeling the solubility of sulfur in magmas: a 50‐year old geochemical challenge. Reviews in Mineralogy and Geochemistry, 73(1), 167–213. https://doi.org/10.2138/rmg.2011.73.7

7 Barton, P. B., Jr. (1970). Sulfide petrology: Mineralogical Society of America Special Paper 3, 187–198.

8 Biernat R. J., & Robins, R. G. (1969). High temperature potential/pH diagrams for the sulfur‐water system. Electrochimica Acta 14, 809–820. https://doi.org/10.1016/0013‐4686(69)87003‐9

9 Bowen, N. L., & Schairer, J. F. (1932). The system, FeO‐SiO 2. American Journal of Science, 141, 177–213. https://doi.org/10.2475/ajs.s5‐24.141.177

10 Bowen, N. L., & Schairer, J. F. (1935). The system MgO‐FeO‐SiO 2. American Journal of Science, 170, 151–217. doi: 10.2475/ajs.s5‐29.170.151

11 Buddington, A. F., & Lindsley, D. H. (1964). Iron‐titanium oxide minerals and synthetic equivalents. Journal of Petrology, 5, 310–357. https://doi.org/10.1093/petrology/5.2.310

12 Burgisser, A., & Scaillet, B. (2007). Redox evolution of a degassing magma rising to the surface. Nature, 445(7124), 194–197. https://doi.org/10.1038/nature05509

13 Carmichael, I. S. (1991). The redox states of basic and silicic magmas: a reflection of their source regions? Contributions to Mineralogy and Petrology, 106(2), 129–141. https://doi.org/10.1007/BF00306429

14 Casey H. W. (2017). Oxidation‐Reduction Reactions and Eh‐pH (Pourbaix) Diagrams. In: W.M. White (ed.), Encyclopedia of Geochemistry, doi:10.1007/978‐3‐319‐39193‐9_21‐1

15 Cicconi, M. R., Moretti, R., & Neuville, D. R. (2020a). Earth’s Electrodes. Elements, 16, 3, 157–160. doi: 10.2138/gselements.16.3.157

16 Cicconi, M. R., Le Losq, C., Moretti, R., & Neuville, D. R. (2020b). Magmas are the largest repositories and carriers of Earth’s redox processes. Elements, 16, 3, 173–178. doi: 10.2138/gselements.16.3.173

17 Colson, R. O., Haskin, L. A., & Crane, D. (1990). Electrochemistry of cations in diopsidic melt: Determining diffusion rates and redox potentials from voltammetric curves. Geochimica et Cosmochimica Acta, 54, 3353–3367. https://doi.org/10.1016/0016‐7037(90)90290‐2

18 Cochain B., Neuville D. R., Henderson G. S., McCammon C., Pinet O., & Richet, P. (2012). Iron content, redox state and structure of sodium borosilicate glasses: A Raman, Mössbauer and boron K‐edge XANES spectroscopy study. Journal of the American Ceramics Society, 94, 1–12. https://doi.org/10.1111/j.1551‐2916.2011.05020.x

19 Cochain, B., Neuville, D. R., de Ligny, D., Malki, M., Testemale, D., Pinet O., & Richet P. (2013). Dynamics of iron‐bearing borosilicate melts: Effects of melt structure and composition on viscosity, electrical conductivity and kinetics of redox reactions. Journal of Non‐Crystalline Solids, 373–374, 18–27. https://doi.org/10.1016/j.jnoncrysol.2013.04.006

20 Cook, G. B., & Cooper, R. F. (2000). Iron concentration and the physical processes of dynamic oxidation in alkaline earth aluminosilicate glass. American Mineralogist, 85, 397–406. https://doi.org/10.2138/am‐2000‐0401

21 Cook, G. B., Cooper, R. F., & Wu, T. (1990). Chemical diffusion and crystalline nucleation during oxidation of ferrous ironbearing magnesium aluminosilicate glass. Journal of Non‐Crystalline Solids, 120, 207–222. https://doi.org/10.1016/0022‐3093(90)90205‐Z

22 Cooper, R. F., Fanselow, J. B., & Poker, D. B. (1996a). The mechanism of oxidation of a basaltic glass: chemical diffusion of network‐modifying cations. Geochimica et Cosmochimica Acta, 60(17), 3253–3265. https://doi.org/10.1016/0016‐7037(96)00160‐3

23 Cooper, R. F., Fanselow, J. B., Weber, J. K. R., Merkley, D. R., & Poker, D. B. (1996b). Dynamics of oxidation of a Fe2+‐bearing aluminosilicate (basaltic) melt. Science, 274, 1173–1176. doi: 10.1126/science.274.5290.1173

24 Darken, L., & Gurry, R. W. (1945). The system iron‐oxygen. I. The wüstite field and related equilibria. Journal of the American Chemical Society, 67(8), 1398–1412. https://doi.org/10.1021/ja01224a050

25 Darken, L., & Gurry, R. W. (1946). The system iron—oxygen. II. Equilibrium and thermodynamics of liquid oxide and other phases. Journal of the American Chemical Society, 68(5), 798–816. https://doi.org/10.1021/ja01209a030

26 Dickson, W. R., & Dismukes, E. B. (1962). The electrolysis of FeO‐CaO‐SiO2 melts. Transactions of the Metallurgical Society of AIME, 224, 505–511.

27 Dancy, E. A., & Derge, G. J. (1966). Electrical conductivity of FeOx‐CaO slags. Transactions of the Metallurgical Society of AIME, 236, 1642.

28 Ellingham, H. J. T. (1944). Reducibility of oxides and sulfides in metallurgical processes. Journal of the Society of Chemical Industry, 63, 125–133.

29 Eugster, H. P. (1957). Heterogeneous reactions involving oxidation and reduction at high pressures and temperatures. The Journal of Chemical Physics, 26(6), 1760–1761. https://doi.org/10.1063/1.1743626

30 Eugster, H. P. (1959). Reduction and oxidation in metamorphism. In: Abelson, P. H. (ed.) Researches in Geochemistry. Volume 1. New York: John Wiley & Sons, pp. 397–426.

31 Eugster, H. P. (1977). Compositions and thermodynamics of metamorphic solutions. In: Fraser, D. G. (ed.) Thermodynamics in Geology. Dordrecht: D. Reidel Publishing Company, pp. 183–202.

32 Eugster, H. P., & Wones, D. R. (1962). Stability relations of the ferruginous biotite, annite. Journal of Petrology, 3, 82–125. https://doi.org/10.1093/petrology/3.1.82

33 Feig, S. T., Koepke, J., & Snow, J. E. (2010). Effect of oxygen fugacity and water on phase equilibria of a hydrous tholeiitic basalt. Contributions to Mineralogy and Petrology, 160, 551–568. doi:10.1007/s00410‐010‐0493‐3

34 Fraser, D. G. (1975). Activities of trace elements in silicate melts. Geochimica et Cosmochimica Acta, 39(11), 1525–1530. https://doi.org/10.1016/0016‐7037(75)90154‐4

35 Frost, B. R. (1991). Introduction to oxygen fugacity and its petrologic importance. Reviews in Mineralogy and Geochemistry, 25, 1–9. https://doi.org/10.1515/9781501508684‐004

36 Frost, D. J., & McCammon, C. A. (2008). The redox state of Earth's mantle. Annual Review of Earth and Planetary Science, 36, 389–420. https://doi.org/10.1146/annurev.earth.36.031207.124322

37 Gaillard, F., Scaillet, B., Pichavant, M., & Iacono‐Marziano, G. (2015). The redox geodynamics linking basalts and their mantle sources through space and time. Chemical Geology, 418, 217–233. https://doi.org/10.1016/j.chemgeo.2015.07.030

38 Giggenbach, W. F. (1980). Geothermal gas equilibria. Geochimica et cosmochimica Acta, 44(12), 2021–2032. https://doi.org/10.1016/0016‐7037(80)90200‐8

39 Giggenbach, W. F. (1987). Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Applied Geochemistry, 2(2), 143–161. https://doi.org/10.1016/0883‐2927(87)90030‐8

40 Gudmundsson, G., & Wood, B. J. (1995). Experimental tests of garnet peridotite oxygen barometry. Contributions to Mineralogy and Petrology, 119(1), 56–67. https://doi.org/10.1007/BF00310717

41 Hasegawa, M. (2014) Ellingham Diagram. Treatise on Process Metallurgy, Volume 3, 507–513. http://dx.doi.org/10.1016/B978‐0‐08‐096986‐2.00032‐1

42 Haskin, L. A., Colson, R. O., Lindstrom, D. J., Lewis, R. H., & Semkow, K. W. (1992, September). Electrolytic smelting of lunar rock for oxygen, iron, and silicon. In: Nasa. Johnson Space Center. The Second Conference on Lunar Bases and Space Activities of the 21st Century, Volume 2, 411–422.

43 Hillert, M., Jansson, B. O., & Sundman, B. O. (1985). A two‐sublattice model for molten solutions with different tendency for ionization. Metallurgical Transactions A, 16(1), 261–266. https://doi.org/10.1007/BF02816052

44 Kress, V. C., & Carmichael, I. S. (1991). The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology, 108(1–2), 82–92. https://doi.org/10.1007/BF00307328

45 Lavoisier A. (1777) Mémoire sur la combustion en général, Académie des sciences, Mémoires de l’Académie Royale, Paris, 592–600.

46 Le Losq, C., Moretti, R., Oppenheimer, C., & Neuville, D. R. (2020) In situ XANES study of the influence of varying temperature and oxygen fugacity on iron oxidation state and coordination in a phonolitic melt. Contributions to Mineralogy and Petrology, 175, 64–77. doi: 10.1007/s00410‐020‐01701‐4

47 Lewis, G. N., & Randall, M. (1961). Thermodynamics, 2nd Edition. Revised By Kenneth Pitzer and Leo Brewer. McGraw‐Hill Book Company. 723pp.

48 Ripley, E. M., & Li, C. (2013). Sulfide saturation in mafic magmas: Is external sulfur required for magmatic Ni‐Cu‐(PGE) ore genesis? Economic Geology, 108(1), 45–58. https://doi.org/10.2113/econgeo.108.1.45

49 Littlewood, R. (1962). Diagrammatic representation of the thermodynamics of metal‐fused chloride systems. Journal of the Electrochemical Society, 109, 525–534.

50 Magnien, V., Neuville, D. R., Cormier, L., Roux, J., Hazemann, J‐L., Pinet, O., and Richet, P. (2006). Kinetics of iron redox reactions in silicate liquids: a high‐temperature X‐ray absorption and Raman spectroscopy study. Journal of Nuclear Materials, 352, 190–195. https://doi.org/10.1016/j.jnucmat.2006.02.053

51 Magnien, V., Neuville, D. R., Cormier, L., Roux, J., Hazemann, J‐L., de Ligny D., et al. (2008). Kinetics and mechanisms of iron redox reactions in silicate melts: The effects of temperature and alkali cations. Geochimica et Cosmochimica Acta, 72, 2157–2168. https://doi.org/10.1016/j.gca.2008.02.007

52 Mallmann, G., & O’Neill, H. S. C. (2009). The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology, 50(9), 1765–1794. doi:10.1093/petrology/egp053

53 Mao, H., Hillert, M., Selleby, M., & Sundman, B. (2006). Thermodynamic assessment of the CaO–Al2O3–SiO2 system. Journal of the American Ceramic Society, 89(1), 298–308. https://doi.org/10.1111/j.1551‐2916.2005.00698.x

54 Mattioli, G. S., & Wood, B. J. (1988). Magnetite activities across the MgAl2O4‐Fe3O4 spinel join, with application to thermobarometric estimates of upper mantle oxygen fugacity. Contributions to Mineralogy and Petrology, 98(2), 148–162. https://doi.org/10.1007/BF00402108

55 Moretti, R. (2005). Polymerisation, basicity, oxidation state and their role in ionic modelling of silicate melts. Annals of Geophysics, 48, 4/5, 583–608. https://doi.org/10.4401/ag‐3221

56 Moretti, R. (2021). Ionic syntax and equilibrium approach to redox exchanges in melts: basic concepts and the case of iron and sulfur in degassing magmas. In: Moretti, R., and Neuville, D. R. (eds.) Redox Magma Geochemistry. Geophysical Monograph Series 266. American Geophysical Union.

57 Moretti, R., & Baker, D. R. (2008). Modeling of the interplay of fO2 and fS2 along the FeS‐Silicate Melt equilibrium. Chemical Geology, 256, 286–298. doi:10.1016/j.chemgeo.2008.06.055.

58 Moretti, R., & Ottonello, G. (2003). Polymerization and disproportionation of iron and sulfur in silicate melts: insights from an optical basicity‐based approach. Journal of Non‐Crystalline Solids, 323, 111–119. https://doi.org/10.1016/S0022‐3093(03)00297‐7

59 Moretti, R., Arienzo, I., Civetta, L., Orsi, G., & Papale, P. (2013) Multiple magma degassing sources at an explosive volcano. Earth and Planetary Sciences Letters, 367, 95–104. https://doi.org/10.1016/j.epsl.2013.02.013

60 Moretti, R., & Stefánsson, A. (2020). Volcanic and geothermal redox engines. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 16(3), 179–184. https://doi.org/10.2138/gselements.16.3.179

61 Nadoll, P., Angerer, T., Mauk, J.L., French, D., & Walshe, J. (2014). The chemistry of hydrothermal magnetite: A review. Ore Geology Reviews, 61, 1–32. https://doi.org/10.1016/j.oregeorev.2013.12.013

62 Nash, W. M., Smythe, D. J., & Wood, B. J. (2019). Compositional and temperature effects on sulfur speciation and solubility in silicate melts. Earth and Planetary Science Letters, 507, 187–198. https://doi.org/10.1016/j.epsl.2018.12.006

63 Neuville, D. R., Cicconi, M. R., & Le Losq, C. (2021). How to measure the oxidation state of multivalent elements in minerals, glasses and melts? In: Moretti, R., and Neuville, D. R. Magma Redox Geochemistry. Geophysical Monograph Series 266. American Geophysical Union.

64 Ottonello, G. (1997). Principles of Geochemistry. Columbia University Press, 894 pp.

65 Ottonello, G., & Moretti, R. (2004). Lux‐Flood basicity of binary silicate melts. Journal of Physics and Chemistry of Solids, 65(8–9), 1609–1614. https://doi.org/10.1016/j.jpcs.2004.01.012

66 Ottonello, G., Moretti, R., Marini, L., & Zuccolini, M. V. (2001). Oxidation state of iron in silicate glasses and melts: a thermochemical model. Chemical Geology, 174(1–3), 157–179. https://doi.org/10.1016/S0009‐2541(00)00314‐4

67 Pichavant, M., Costa, F., Burgisser, A., Scaillet, B., Martel, C., & Poussineau, S. (2007). Equilibration scales in silicic to intermediate magmas—implications for experimental studies. Journal of Petrology, 48(10), 1955–1972. https://doi.org/10.1093/petrology/egm045

68 Pinet, O., Phalippou, J., & Di Nardo, C. (2006). Modeling the redox equilibrium of the Ce4+/Ce3+ couple in silicate glass by voltammetry. Journal of Non‐Crystalline Solids, 352(50–51), 5382–5390. https://doi.org/10.1016/j.jnoncrysol.2006.08.034

69 Raymond, J., Williams‐Jones, A. E., & Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlın geothermal field, El Salvador; implications for metal transport in natural systems. Journal of Volcanology and Geothermal Research, 145, 81–96. doi: 10.1016/j.jvolgeores.2005.01.003

70 Schreiber, H. D. (1987). An electrochemical series of redox couples in silicate melts: a review and applications to geochemistry. Journal of Geophysical Research: Solid Earth, 92(B9), 9225–9232. https://doi.org/10.1029/JB092iB09p09225

71 Sokhanvaran, S., Lee, S.‐K., Lambotte, G., & Allanore, A. (2016). Electrochemistry of molten sulfides: Copper extraction from BaS‐Cu2S. Journal of The Electrochemical Society, 163, D115–D120.

72 Semkow, K. W., & Haskin, L. A. (1985). Concentrations and behavior of oxygen and oxide ion in melts of composition CaO·MgO·xSiO2. Geochimica et Cosmochimica Acta, 49(9), 1897–1908. https://doi.org/10.1016/0016‐7037(85)90084‐5

73 Toop, G. W., & Samis, C. S. (1962a). Some new ionic concepts of silicate slags. Canadian Metallurgical Quarterly, 1, 129–152. https://doi.org/10.1179/cmq.1962.1.2.129

74 Toop, G. W., & Samis, C. S. (1962b). Activities of ions in silicate melts. Transactions of the Metallurgical Society of AIME, 224, 878–887.

75 Trémillon B. (1974). Chemistry in non‐aqueous solvents. Dordrecht: D. Reidel Publishing Company. 285 pp.

76 Vaughan, D. J. (2005). Minerals/Sulphides. Encyclopedia of Geology. Elsevier. 574–586.

77 Zhang, J., Matsuura, H., & Tsukihashi, F. (2014). Processes for Recycling. Treatise on Process Metallurgy, Volume 3, 1507–1561. http://dx.doi.org/10.1016/B978‐0‐08‐096988‐6.00036‐5

Magma Redox Geochemistry

Подняться наверх