Читать книгу Handbook of Aggregation-Induced Emission, Volume 1 - Группа авторов - Страница 48

References

Оглавление

1 1 Briks, J. B. (1970). Photophysics of Aromatic Molecules. Wiley: London.

2 2 Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. (2015). Aggregation‐induced emission: together we shine, united we soar! Chem. Rev., 115 (21), 11718–11940.

3 3 Mei, J.; Hong, Y.; Lam, J. W. Y.; Qin, A.; Tang, Y.; Tang, B. Z. (2014). Aggregation‐induced emission: the whole is more brilliant than the parts. Adv. Mater. 26 (31), 5429–5479.

4 4 Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. (2001). Aggregation‐induced emission of 1‐methyl‐1,2,3,4,5‐pentaphenylsilole. Chem. Commun. (18), 1740–1741.

5 5 Oelkrug, D.; Tompert, A.; Gierschner, J.; Egelhaaf, H.‐J.; Hanack, M.; Hohloch, M.; Steinhuber, E. (1998). Tuning of fluorescence in films and nanoparticles of oligophenylenevinylenes. J. Phys. Chem. B 102 (11), 1902–1907.

6 6 Hong, Y.; Lam, J. W. Y.; Tang, B. Z. (2009). Aggregation‐induced emission: phenomenon, mechanism and applications. Chem. Commun. 4332–4353.

7 7 Chen, J.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y.; Lo, S. M. F.; Williams, I. D.; Zhu, D.; Tang, B. Z., (2003). Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1‐substituted 2,3,4,5‐tetraphenylsiloles. Chem. Mater. 15 (7), 1535–1546.

8 8 Dong, Y.; Lam, J. W. Y.; Qin, A.; Sun, J.; Liu, J.; Li, Z.; Sun, J.; Sung, H. H. Y.; Williams, I. D.; Kwok, H. S.; Tang, B. Z. (2007). Aggregation‐induced and crystallization‐enhanced emissions of 1,2‐diphenyl‐3,4‐bis(diphenylmethylene)‐1‐cyclobutene. Chem. Commun. 3255–3257.

9 9 Leung, N. L. C.; Xie, N.; Yuan, W.; Liu, Y.; Wu, Q.; Peng, Q.; Miao, Q.; Lam, J. W. Y.; Tang, B. Z. (2014). Restriction of intramolecular motions: the general mechanism behind aggregation‐induced emission. Chem. Eur. J. 20 (47), 15349–15353.

10 10 Shuai, Z.; Peng, Q. (2014). Excited states structure and processes: understanding organic light‐emitting diodes at the molecular level. Phys. Rep. 537 (4), 123–156.

11 11 Peng, Q.; Niu, Y.; Shi, Q.; Gao, X.; Shuai, Z. (2013). Correlation function formalism for triplet excited state decay: combined spin–orbit and nonadiabatic couplings. J. Chem. Theory Comput. 9 (2), 1132–1143.

12 12 Niu, Y.; Peng, Q.; Deng, C.; Gao, X.; Shuai, Z. (2010). Theory of excited state decays and optical spectra: application to polyatomic molecules. J. Phys. Chem. A 114 (30), 7817–7831.

13 13 Peng, Q.; Yi, Y.; Shuai, Z.; Shao, J. (2007). Toward quantitative prediction of molecular fluorescence quantum efficiency: role of Duschinsky rotation. J. Am. Chem. Soc. 129 (30), 9333–9339.

14 14 Peng, Q.; Yi, Y.; Shuai, Z.; Shao, J. (2007). Excited state radiationless decay process with Duschinsky rotation effect: formalism and implementation. J. Chem. Phys. 126 (11), 114302.

15 15 Li, Q.; Blancafort, L. (2013). A conical intersection model to explain aggregation induced emission in diphenyl dibenzofulvene. Chem. Commun. 49 (53), 5966–5968.

16 16 Crespo‐Otero, R.; Li, Q.; Blancafort, L. (2019). Exploring potential energy surfaces for aggregation‐induced emission—from solution to crystal. Chem. Asian J. 14 (6), 700–714.

17 17 Liu, Y.; Tao, X.; Wang, F.; Shi, J.; Sun, J.; Yu, W.; Ren, Y.; Zou, D.; Jiang, M. (2007). Intermolecular hydrogen bonds induce highly emissive excimers: enhancement of solid‐state luminescence. J. Phys. Chem. C 111 (17), 6544–6549.

18 18 Huang, W.; Sun, L.; Zheng, Z.; Su, J.; Tian, H. (2015). Colour‐tunable fluorescence of single molecules based on the vibration induced emission of phenazine. Chem. Commun. 51 (21), 4462–4464.

19 19 Chung, J. W.; Yoon, S.‐J.; An, B.‐K.; Park, S. Y. (2013). High‐contrast on/off fluorescence switching via reversible E–Z isomerization of diphenylstilbene containing the α‐cyanostilbenic moiety. J. Phys. Chem. C 117 (21), 11285–11291.

20 20 Yang, L.; Ye, P.; Li, W.; Zhang, W.; Guan, Q.; Ye, C.; Dong, T.; Wu, X.; Zhao, W.; Gu, X.; Peng, Q.; Tang, B.; Huang, H. (2018). Uncommon aggregation‐induced emission molecular materials with highly planar conformations. Adv. Optical Mater. 6 (9), 1701394.

21 21 Tu, Y.; Liu, J.; Zhang, H.; Peng, Q.; Lam, J. W. Y.; Tang, B. Z. (2019). Restriction of access to the dark state: a new mechanistic model for heteroatom‐containing AIE systems. Angew. Chem. Int. Ed. 58 (42), 14911–14914.

22 22 Yang, S.; Yin, P.‐A.; Li, L.; Peng, Q.; Gu, X.; Gao, G.; You, J.; Tang, B. Z. (2020). Crystallization‐induced reversal from dark to bright excited states for construction of solid‐emission‐tunable squaraines. Angew. Chem. Int. Ed. 59(25), 10136–10142. doi: 10.1002/anie.201914437.

23 23 Lin, S. H.; Chang, C. H.; Liang, K. K.; Chang, R.; Shiu, Y. J.; Zhang, J. M.; Yang, T. S.; Hayashi, M.; Hsu, F. C. (2002) Ultrafast dynamics and spectroscopy of bacterial photosynthetic reaction centers. Adv. Chem. Phys. 121, 1–88.

24 24 Niu, Y.; Peng, Q.; Shuai, Z. (2008). Promoting‐mode free formalism for excited state radiationless decay process with Duschinsky rotation effect. Sci. China Ser. B Chem., 51 (12), 1153–1158.

25 25 Peng, Q.; Yi, Y.; Shuai, Z.; Shao, J. (2007). Excited state radiationless decay process with Duschinsky rotation effect: formalism and implementation. J. Chem. Phys. 126 (11), 114302.

26 26 Niu, Y.; Li, W.; Peng, Q.; Geng, H.; Yi, Y.; Wang, L.; Nan, G.; Wang, D.; Shuai, Z. (2018). MOlecular MAterials Property Prediction Package (MOMAP) 1.0: a software package for predicting the luminescent properties and mobility of organic functional materials. Mol. Phys. 116 (7–8), 1078–1090.

27 27 Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. (2004). Development and testing of a general amber force field. J. Comput. Chem. 25 (9), 1157–1174.

28 28 Aaqvist, J.; Warshel, A. (1993). Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches. Chem. Rev. 93 (7), 2523–2544.

29 29 Lin, H.; Truhlar, D. (2007). QM/MM: what have we learned, where are we, and where do we go from here? Theor. Chem. Acc. 117 (2), 185–199.

30 30 Bussi, G.; Donadio, D.; Parrinello, M. (2007). Canonical sampling through velocity rescaling. J. Chem. Phys. 126 (1), 014101.

31 31 Parrinello, M.; Rahman, A. (1981). Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys., 52 (12), 7182–7190.

32 32 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. (2009). Gaussian, Inc.: Wallingford, CT.

33 33 Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. (1989). Electronic structure calculations on workstation computers: the program system turbomole. Chem. Phys. Lett. 162 (3), 165–169.

34 34 Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A. (2010). NWChem: a comprehensive and scalable open‐source solution for large scale molecular simulations. Comput. Phys. Commun. 181 (9), 1477–1489.

35 35 Metz, S.; Kästner, J.; Sokol, A. A.; Keal, T. W.; Sherwood, P. (2014). ChemShell—a modular software package for QM/MM simulations. WIRES Comput. Mol. Sci. 4 (2), 101–110.

36 36 Shuai, Z.; Peng, Q.; Niu, Y.; Geng, H. (2014). MOMAP, a free and open‐source molecular materials property prediction package. Revision 0.2.004; available online: http://www.shuaigroup.net/, Beijing,China.

37 37 Zhang, T.; Jiang, Y.; Niu, Y.; Wang, D.; Peng, Q.; Shuai, Z. (2014). Aggregation effects on the optical emission of 1,1,2,3,4,5‐hexaphenylsilole (HPS): a QM/MM study. J. Phys. Chem. A 118 (39), 9094–9104.

38 38 Xie, Y.; Zhang, T.; Li, Z.; Peng, Q.; Yi, Y.; Shuai, Z. (2015). Influences of conjugation extent on the aggregation‐induced emission quantum efficiency in silole derivatives: a computational study. Chem. Asian J. 10 (10), 2154–2161.

39 39 Wu, Q.; Deng, C.; Peng, Q.; Niu, Y.; Shuai, Z. (2012). Quantum chemical insights into the aggregation induced emission phenomena: a QM/MM study for pyrazine derivatives. J. Comput. Chem. 33 (23), 1862–1869.

40 40 Wu, Q.; Peng, Q.; Niu, Y.; Gao, X.; Shuai, Z. (2012). Theoretical insights into the aggregation‐induced emission by hydrogen bonding: a QM/MM study. J. Phys. Chem. A 116 (15), 3881–3888.

41 41 Ma, H.; Shi, W.; Ren, J.; Li, W.; Peng, Q.; Shuai, Z. (2016). Electrostatic interaction‐induced room‐temperature phosphorescence in pure organic molecules from QM/MM calculations. J. Phys. Chem. Lett. 7 (15), 2893–2898.

42 42 Lin, S.; Peng, Q.; Ou, Q.; Shuai, Z. (2019). Strong solid‐state fluorescence induced by restriction of the coordinate bond bending in two‐coordinate copper(I)–carbene complexes. Inorg. Chem. 58 (21), 14403–14409.

43 43 Zhao, Z.; Zheng, X.; Du, L.; Xiong, Y.; He, W.; Gao, X.; Li, C.; Liu, Y.; Xu, B.; Zhang, J.; Song, F.; Yu, Y.; Zhao, X.; Cai, Y.; He, X.; Kwok, R. T. K.; Lam, J. W. Y.; Huang, X.; Phillips, D. L.; Wang, H.; Tang, B. Z. (2019). Non‐aromatic annulene‐based aggregation‐induced emission system via aromaticity reversal process. Nat. Commun. 10 (1), 2952.

44 44 Bu, F.; Duan, R.; Xie, Y.; Yi, Y.; Peng, Q.; Hu, R.; Qin, A.; Zhao, Z.; Tang, B. Z. (2015). Unusual aggregation‐induced emission of a coumarin derivative as a result of the restriction of an intramolecular twisting motion. Angew. Chem. Int. Ed. 54 (48), 14492–14497.

45 45 Yu, G.; Yin, S.; Liu, Y.; Chen, J.; Xu, X.; Sun, X.; Ma, D.; Zhan, X.; Peng, Q.; Shuai, Z.; Tang, B.; Zhu, D.; Fang, W.; Luo, Y. (2005). Structures, electronic states, photoluminescence, and carrier transport properties of 1,1‐disubstituted 2,3,4,5‐tetraphenylsiloles. J. Am. Chem. Soc. 127 (17), 6335–6346.

46 46 Tang, B. Z.; Zhan, X.; Yu, G.; Sze Lee, P. P.; Liu, Y.; Zhu, D. (2001). Efficient blue emission from siloles. J. Mater. Chem. 11 (12), 2974–2978.

47 47 Zhao, E.; Lam, J. W. Y.; Hong, Y.; Liu, J.; Peng, Q.; Hao, J.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. (2013). How do substituents affect silole emission? J. Mater. Chem. C 1 (36), 5661–5668.

48 48 Zhao, Z.; Liu, D.; Mahtab, F.; Xin, L.; Shen, Z.; Yu, Y.; Chan, C. Y. K.; Lu, P.; Lam, J. W. Y.; Sung, H. H. Y.; Williams, I. D.; Yang, B.; Ma, Y.; Tang, B. Z. (2011). Synthesis, structure, aggregation‐induced emission, self‐assembly, and electron mobility of 2,5‐bis(triphenylsilylethynyl)‐3,4‐diphenylsiloles. Chem. Eur. J. 17 (21), 5998–6008.

49 49 Zhan, X.; Haldi, A.; Risko, C.; Chan, C. K.; Zhao, W.; Timofeeva, T. V.; Korlyukov, A.; Antipin, M. Y.; Montgomery, S.; Thompson, E.; An, Z.; Domercq, B.; Barlow, S.; Kahn, A.; Kippelen, B.; Brédas, J.‐L.; Marder, S. R. (2008). Fluorenyl‐substituted silole molecules: geometric, electronic, optical, and device properties. J. Mater. Chem. 18 (26), 3157–3166.

50 50 Romanov, A. S.; Di, D.; Yang, L.; Fernandez‐Cestau, J.; Becker, C. R.; James, C. E.; Zhu, B.; Linnolahti, M.; Credgington, D.; Bochmann, M. (2016). Highly photoluminescent copper carbene complexes based on prompt rather than delayed fluorescence. Chem. Commun. 52 (38), 6379–6382.

51 51 Karadakov, P. B. (2008). Aromaticity and antiaromaticity in the low‐lying electronic states of cyclooctatetraene. J. Phys. Chem. A 112 (49), 12707–12713.

52 52 Feixas, F.; Vandenbussche, J.; Bultinck, P.; Matito, E.; Solà, M. (2011). Electron delocalization and aromaticity in low‐lying excited states of archetypal organic compounds. Phys. Chem. Chem. Phys. 13 (46), 20690–20703.

53 53 Gogonea, V.; Schleyer, P. v. R.; Schreiner, P. R. (1998). Consequences of triplet aromaticity in 4nπ‐electron annulenes: calculation of magnetic shieldings for open‐shell species. Angew. Chem. Int. Ed. 37 (13‐14), 1945–1948.

54 54 Dong, Y.; Xu, B.; Zhang, J.; Lu, H.; Wen, S.; Chen, F.; He, J.; Li, B.; Ye, L.; Tian, W. (2012). Supramolecular interactions induced fluorescent organic nanowires with high quantum yield based on 9,10‐distyrylanthracene. CrystEngComm 14 (20), 6593–6598.

55 55 Qin, A.; Lam, J. W. Y.; Mahtab, F.; Jim, C. K. W.; Tang, L.; Sun, J.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. (2009). Pyrazine luminogens with “free” and “locked” phenyl rings: understanding of restriction of intramolecular rotation as a cause for aggregation‐induced emission. Appl. Phys. Lett. 94 (25), 253308.

56 56 Chen, J.; Xu, B.; Ouyang, X.; Tang, B. Z.; Cao, Y. (2004). Aggregation‐induced emission of cis,cis‐1,2,3,4‐tetraphenylbutadiene from restricted intramolecular rotation. J. Phys. Chem. A 108 (37), 7522–7526.

57 57 Wu, Q.; Zhang, T.; Peng, Q.; Wang, D.; Shuai, Z. (2014). Aggregation induced blue‐shifted emission ‐ the molecular picture from a QM/MM study. Phys. Chem. Chem. Phys. 16 (12), 5545–5552.

58 58 Heller, E. J.; Sundberg, R.; Tannor, D. (1982). Simple aspects of Raman scattering. J. Phys. Chem. 86 (10), 1822–1833.

59 59 Santoro, F.; Cappelli, C.; Barone, V. (2011). Effective time‐independent calculations of vibrational resonance Raman spectra of isolated and solvated molecules including Duschinsky and Herzberg–Teller effects. J. Chem. Theory Comput. 7 (6), 1824–1839.

60 60 Dong, Y.; Lam, J. W. Y.; Qin, A.; Sun, J.; Liu, J.; Li, Z.; Sun, J.; Sung, H. H. Y.; Williams, I. D.; Kwok, H. S.; Tang, B. Z. (2007). Aggregation‐induced and crystallization‐enhanced emissions of 1,2‐diphenyl‐3,4‐bis(diphenylmethylene)‐1‐cyclobutene. Chem. Commun. ( 31), 3255–3257.

61 61 Zhang, T.; Ma, H.; Niu, Y.; Li, W.; Wang, D.; Peng, Q.; Shuai, Z.; Liang, W. (2015). Spectroscopic signature of the aggregation‐induced emission phenomena caused by restricted nonradiative decay: a theoretical proposal. J. Phys. Chem. C 119 (9), 5040–5047.

62 62 Lin, S. H.; Bersohn, R. (1968). Effect of partial deuteration and temperature on triplet‐state lifetimes. J. Chem. Phys. 48 (6), 2732–2736.

63 63 Saltiel, J.; Waller, A. S.; Sears, D. F.; Garrett, C. Z. (1993). Fluorescence quantum yields of trans‐stilbene‐d0 and ‐d2 in n‐hexane and n‐tetradecane: medium and deuterium isotope effects on decay processes. J. Phys. Chem. 97 (11), 2516–2522.

64 64 Zhang, T.; Peng, Q.; Quan, C.; Nie, H.; Niu, Y.; Xie, Y.; Zhao, Z.; Tang, B. Z.; Shuai, Z. (2016). Using the isotope effect to probe an aggregation induced emission mechanism: theoretical prediction and experimental validation. Chem. Sci. 7 (8), 5573–5580.

65 65 Chen, J.; Xu, B.; Yang, K.; Cao, Y.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. (2005). Photoluminescence spectral reliance on aggregation order of 1,1‐bis(2′‐thienyl)‐2,3,4,5‐tetraphenylsilole. J. Phys. Chem. B 109 (36), 17086–17093.

66 66 Zhang, X.; Sørensen, J. K.; Fu, X.; Zhen, Y.; Zhao, G.; Jiang, L.; Dong, H.; Liu, J.; Shuai, Z.; Geng, H.; Bjørnholm, T.; Hu, W. (2014). Rubrene analogues with the aggregation‐induced emission enhancement behaviour. J. Mater. Chem. C 2 (5), 884–890.

67 67 Yoshiharu, N.; Chitoshi, K.; Hiroyuki, K.; Takeshi, K. (2011). Diacenaphtho[1,2‐b;1′,2′‐d]silole and ‐pyrrole. Chem. Lett. 40 (12), 1437–1439.

68 68 Katoh, R.; Suzuki, K.; Furube, A.; Kotani, M.; Tokumaru, K. (2009). Fluorescence quantum yield of aromatic hydrocarbon crystals. J. Phys. Chem. C 113 (7), 2961–2965.

69 69 Varghese, S.; Park, S. K.; Casado, S.; Fischer, R. C.; Resel, R.; Milián‐Medina, B.; Wannemacher, R.; Park, S. Y.; Gierschner, J. (2013). Stimulated emission properties of sterically modified distyrylbenzene‐based H‐aggregate single crystals. J. Phys. Chem. Lett. 4 (10), 1597–1602.

70 70 Zheng, X.; Peng, Q.; Zhu, L.; Xie, Y.; Huang, X.; Shuai, Z. (2016). Unraveling the aggregation effect on amorphous phase AIE luminogens: a computational study. Nanoscale 8, 15173–15180.

71 71 Fan, X.; Sun, J.; Wang, F.; Chu, Z.; Wang, P.; Dong, Y.; Hu, R.; Tang, B. Z.; Zou, D. (2008). Photoluminescence and electroluminescence of hexaphenylsilole are enhanced by pressurization in the solid state. Chem. Commun. (26), 2989–2991.

72 72 Gu, Y.; Wang, K.; Dai, Y.; Xiao, G.; Ma, Y.; Qiao, Y.; Zou, B. (2017). Pressure‐induced emission enhancement of carbazole: the restriction of intramolecular vibration. J. Phys. Chem. Lett. 8 (17), 4191–4196.

73 73 Yuan, H.; Wang, K.; Yang, K.; Liu, B.; Zou, B. (2014). Luminescence properties of compressed tetraphenylethene: the role of intermolecular interactions. J. Phys. Chem. Lett. 5 (17), 2968–2973.

74 74 Zhang, T.; Shi, W.; Wang, D.; Zhuo, S.; Peng, Q.; Shuai, Z. (2018). Pressure‐induced emission enhancement in hexaphenylsilole: a computational study. J. Mater. Chem. C 7, 1388–1398.

75 75 Wang, D.; Su, H.; Kwok, R. T. K.; Hu, X.; Zou, H.; Luo, Q.; Lee, M. S.; Xu, W.; Lam, J. W. Y.; Tang, B. Z. (2018). Rational design of a water‐soluble NIR AIEgen, and its application in ultrafast wash‐free cellular imaging and photodynamic cancer cell ablation. Chem. Sci. 9, 3685–3693.

76 76 Wang, D.; Lee, M. M. S.; Shan, G.; Kwok, R. T. K.; Lam, J. W. Y.; Su, H.; Cai, Y.; Tang, B. Z. (2018). Highly efficient photosensitizers with far‐red/near‐infrared aggregation‐induced emission for in vitro and in vivo cancer theranostics. Adv. Mater. 30, 1802105.

77 77 Zheng, X.; Wang, D.; Xu, W.; Cao, S.; Peng, Q.; Tang, B. Z. (2019). Charge control of fluorescent probes to selectively target the cell membrane or mitochondria: theoretical prediction and experimental validation. Mater. Horiz. 6, 2016–2023.

78 78 Shuai, Z.; Xu, W.; Peng, Q.; Geng, H. (2013). From electronic excited state theory to the property predictions of organic optoelectronic materials. Sci. China Chem. 56 (9), 1277–1284.

79 79 Li, W.; Zhu, L.; Shi, Q.; Ren, J.; Peng, Q.; Shuai, Z. (2017). Excitonic coupling effect on the nonradiative decay rate in molecular aggregates: formalism and application. Chem. Phys. Lett. 683, 507–514.

80 80 Li, W.; Peng, Q.; Xie, Y.; Zhang, T.; Shuai, Z. (2016). Effect of intermolecular excited‐state interaction on vibrationally resolved optical spectra in organic molecular aggregates. Acta Chim. Sinica 74 (11), 902–909.

Handbook of Aggregation-Induced Emission, Volume 1

Подняться наверх