Читать книгу Handbook of Aggregation-Induced Emission, Volume 1 - Группа авторов - Страница 57

References

Оглавление

1 1 Birks, J. B. (1970). Photophysics of Aromatic Molecules. London: Wiley.

2 2 Mei, J., Hong, Y., Lam, J. W. et al. (2014). Aggregation‐induced emission: the whole is more brilliant than the parts. Advanced Materials 26 (31): 5429–5479.

3 3 Lim, M. H. and Lippard, S. J. (2007). Metal‐based turn‐on fluorescent probes for sensing nitric oxide. Accounts of Chemical Research 40 (1): 41–51.

4 4 Tang, C. W. and Vanslyke, S. A. (1987). Organic electroluminescent diodes. Applied Physics Letters 51 (12): 913–915.

5 5 Luo, J., Xie, Z., Lam, J. W. Y. et al. (2001). Aggregation‐induced emission of 1‐methyl‐1,2,3,4,5‐pentaphenylsilole. Chemical Communications 381 (18): 1740–1741.

6 6 Hu, R., Lam, J. W. Y., Liu, Y. et al. (2013). Aggregation‐induced emission of tetraphenylethene‐hexaphenylbenzene adducts: effects of twisting amplitude and steric hindrance on light emission of nonplanar fluorogens. Chemistry A European Journal 19 (18): 5617–5624.

7 7 Tong, H., Hong, Y., Dong, Y. et al. (2006). Fluorescent “light‐up” bioprobes based on tetraphenylethylene derivatives with aggregation‐induced emission characteristics. Chemical Communications ( 35): 3705–3707.

8 8 An, B.‐K., Kwon, S.‐K., Jung, S.‐D. et al. (2002). Enhanced emission and its switching in fluorescent organic nanoparticles. Journal of the American Chemical Society 124 (48): 14410–14415.

9 9 Kokado, K. and Chujo, Y. (2009). Polytriazoles with aggregation‐induced emission characteristics: synthesis by click polymerization and application as explosive chemosensors. Macromolecules 42 (5): 1421–1424.

10 10 Wang, M., Zhang, G., Zhang, D. et al. (2010). Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation‐induced emission feature. Journal of Materials Chemistry 20 (10): 1858–1867.

11 11 Chen, J., Law, C. C. W., Lam, J. W. Y. et al. (2003). Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1‐substituted 2,3,4,5‐tetraphenylsiloles. Chemistry of Materials 15 (7): 1535–1546.

12 12 Mei, J., Leung, N. L. C., Kwok, R. T. K. et al. (2015). Aggregation‐induced emission: together we shine, united we soar! Chemical Reviews 115 (21):11718–11940.

13 13 Feng, H.‐T., Yuan, Y.‐X., Xiong, J.‐B. et al. (2018). Macrocycles and cages based on tetraphenylethylene with aggregation‐induced emission effect. Chemical Society Reviews 47 (19): 7452–7476.

14 14 Hong, Y., Lam, J. W. Y., and Tang, B. Z. (2011). Aggregation‐induced emission. Chemical Society Reviews 40 (11): 5361−5388.

15 15 Kwok, R. T. K., Leung, C. W. T., Lam, J. W. Y. et al. (2015). Biosensing by luminogens with aggregation‐induced emission characteristics. Chemical Society Reviews 44 (33): 4228−4238.

16 16 Hu, R., Leung, N. L., and Tang, B. Z. (2014). AIE macromolecules: syntheses, structures and functionalities. Chemical Society Reviews 43 (13): 4494−4562.

17 17 Hong, Y., Lam, J. W. Y., and Tang, B. Z. (2009). Aggregation‐induced emission: phenomenon, mechanism and applications. Chemical Communications 45 ( 29):4332−4353.

18 18 Hu, M., Yuan, Y., Wang, W. et al. (2020). Chiral recognition and enantiomer excess determination based on emission wavelength change of AIEgen rotor. Nature Communications 11: 161.

19 19 Huang, J., Sun, N., Yang, J. et al. (2012). Benzene‐cored fluorophores with TPE peripheries: facile synthesis, crystallization‐induced blue‐shifted emission, and efficient blue luminogens for non‐doped OLEDS. Journal of Materials Chemistry 22 (24): 12001−12007.

20 20 Huang, J., Sun, N., Dong, Y. et al. (2013). Similar or totally different: the control of conjugation degree through minor structural modifications, and deep‐blue aggregation‐induced emission luminogens for non‐doped OLEDS. Advanced Functional Materials 23 (18): 2329−2337.

21 21 Yuan, Y.‐X., Xiong, J.‐B., Luo, J. et al. (2019). The self‐assembly and chiroptical properties of tetraphenylethylene dicycle tetracholesterol with an AIE effect. Journal of Materials Chemistry C 7 (27): 8236–8243.

22 22 Geddes, C. D. and Lakopwicz, J. R. (2005). Advanced Concepts in Fluorescence Sensing. Norwell: Springer.

23 23 Jares‐Erijman, E. A. and Jovin, T. M. (2003). Fret imaging. Nature Biotechnology 21 (11): 1387−1395.

24 24 Liu, Y., Tao, X., Wang, F. et al. (2007). Intermolecular hydrogen bonds induce highly emissive excimers: enhancement of solid‐state luminescence. Journal of Physical Chemistry C 111 (17): 6544−6549.

25 25 An, B.‐K., Lee, D.‐S., Lee, J.‐S. et al. (2000). Microchannel networks for nanowire patterning. Journal of the American Chemical Society 122 (41): 10232−10233.

26 26 Li, Y., Li, F., Zhang, H. et al. (2007). Tight intermolecular packing through supramolecular interactions in crystals of cyano substituted oligo (para‐phenylene vinylene): a key factor for aggregation‐induced emission. Chemical Communications 45 ( 3): 231−233.

27 27 Ren, Y., Kan, W. H., Henderson, M. A. et al. (2011). External‐stimuli responsive photophysics and liquid crystal properties of self‐assembled “phosphole‐lipids”. Journal of the American Chemical Society 133 (42): 17014−17026.

28 28 Xie, Z., Yang, B., Li, F. et al. (2005). Cross dipole stacking in the crystal of distyrylbenzene derivative: the approach toward high solid‐state luminescence efficiency. Journal of the American Chemical Society 127 (41): 14152−14153.

29 29 Zhang, J., Xu, B., Chen, J. et al. (2014). An organic luminescent molecule: what will happen when the “butterflies” come together? Advanced Materials 26 (5): 739−745.

30 30 Yuan, Y.‐X., Wu, B.‐X., Xiong, J.‐B. et al. (2019). Exceptional aggregation‐induced emission from one totally planar molecule. Dyes and Pigments 170: 107556.

31 31 Luo, J., Song, K., Gu, F. et al. (2011). Switching of non‐helical overcrowded tetrabenzoheptafulvalene derivatives. Chemical Science 2 (10): 2029–2034.

32 32 Leung, N. L., Xie, N., Yuan, W. et al. (2014). Restriction of intramolecular motions: the general mechanism behind aggregation‐induced emission. Chemistry–A European Journal, 20 (47): 15349–15353.

33 33 Zhao, Z., Zheng, X., Du, L. et al. (2019). Non‐aromatic annulene‐based aggregation‐induced emission system via aromaticity reversal process. Nature Communications 10 (1): 1–10.

34 34 Yao, L., Zhang, S., Wang, R. et al. (2014). Highly efficient near‐infrared organic light‐emitting diode based on a butterfly‐shaped donor–acceptor chromophore with strong solid‐state fluorescence and a large proportion of radiative excitons. Angewandte Chemie International Edition 53 (8): 2119–2123.

35 35 Liu, J., Meng, Q., Zhang, X. et al. (2013). Aggregation‐induced emission enhancement based on 11, 11, 12, 12,‐tetracyano‐9, 10‐anthraquinodimethane. Chemical Communications 49 (12): 1199–1201.

36 36 Kamaldeep, K. S. n., Kaur, S., Bhalla, V. et al. (2014). Pentacenequinone derivatives for preparation of gold nanoparticles: facile synthesis and catalytic application. Journal of Materials Chemistry A 2 (22): 8369–8375.

37 37 Banal, J. L., White, J. M., Ghiggino, K. P. et al. (2014). Concentrating aggregation‐induced fluorescence in planar waveguides: a proof‐of‐principle. Scientific Reports 4 (1): 1–5.

38 38 Irie, M., Fukaminato, T., Matsuda, K. et al. (2014). Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chemical Reviews 114 (24): 12174–12277.

39 39 Yuan, Y. X. and Zheng, Y. S. (2019). New acylhydrazone photoswitches with quantitative conversion and high quantum yield but without hydrogen bond stabilizing (Z)‐isomer. ACS Applied Materials & Interfaces 11 (7): 7303–7310.

40 40 Tseng, N. W., Liu, J., Ng, J. C. et al. (2012). Deciphering mechanism of aggregation‐induced emission (AIE): Is E–Z isomerisation involved in an AIE process? Chemical Science 3 (2): 493–497.

41 41 Wang, J., Mei, J., Hu, R. et al. (2012). Click synthesis, aggregation‐induced emission, E/Z isomerization, self‐organization, and multiple chromisms of pure stereoisomers of a tetraphenylethene‐cored luminogen. Journal of the American Chemical Society 134 (24): 9956–9966.

42 42 Yang, Z., Qin, W., Leung, N. L. et al. (2016). A mechanistic study of AIE processes of TPE luminogens: intramolecular rotation vs. configurational isomerization. Journal of Materials Chemistry C 4 (1): 99–107.

43 43 Xiong, J.‐B., Feng, H.‐T., Sun, J.‐P. et al. (2016). The fixed propeller‐like conformation of tetraphenylethylene that reveals aggregation‐induced emission effect, chiral recognition, and enhanced chiroptical property. Journal of the American Chemical Society 138 (36): 11469–11472.

44 44 Xiong, J.‐B., Yuan, Y.‐X., Wang, L. et al. (2018). Evidence for aggregation‐induced emission from free rotation restriction of double bond at excited state. Organic Letters 20 (2): 373–376.

45 45 Yuan, Y.‐X., Zhang, H.‐C., Hu, M. et al. (2020). Enhanced DNA sensing and chiroptical performance by restriction of double‐bond rotation of AIE cis‐tetraphenylethylene macrocycle diammoniums. Organic Letters 22: 1836–1840.

46 46 Debroy, P., Lindeman, S. V., and Rathore, R. (2009). A versatile synthesis of electroactive stilbenoprismands for effective binding of metal cations. The Journal of Organic Chemistry 74 (5): 2080–2087.

47 47 Sinha, N., Stegemann, L., Tan, T. T. et al. (2017). Turn‐on fluorescence in tetra‐NHC ligands by rigidification through metal complexation: an alternative to aggregation‐induced emission. Angewandte Chemie International Edition 56 (10): 2785–2789.

48 48 Zeng, F., Zhao, S., Jiang, Y. et al. (2017). An emissive rigid tetraphenylethylene‐based molecule and its thermal polymerization. Tetrahedron 73 (30): 4487–4492.

49 49 Qian, H., Cousins, M. E., Horak, E. H. et al. (2017). Suppression of Kasha's rule as a mechanism for fluorescent molecular rotors and aggregation‐induced emission. Nature Chemistry 9 (1): 83–87.

50 50 Kokado, K. and Sada, K. (2019). Consideration of molecular structure in the excited state to design new luminogens with aggregation‐induced emission. Angewandte Chemie 131 (26): 8724–8731.

51 51 Peng, X.‐L., Ruiz‐Barragan, S., Li, Z.‐S. et al. (2016). Restricted access to a conical intersection to explain aggregation induced emission in dimethyl tetraphenylsilole. Journal of Materials Chemistry C 4 (14): 2802–2810.

52 52 Crespo‐Otero, R., Li, Q., and Blancafort, L. (2019). Exploring potential energy surfaces for aggregation‐induced emission—from solution to crystal. Chemistry–An Asian Journal 14 (6): 700–714.

53 53 Ding, W. L., Peng, X. L., Cui, G. L. et al. (2019). Potential‐energy surface and dynamics simulation of THBDBA: an annulated tetraphenylethene derivative combining aggregation‐induced emission and switch behavior. ChemPhotoChem 3 (9): 814–824.

54 54 Zhao, G.‐J., Han, K.‐L., Lei, Y.‐B. et al. (2007). Ultrafast excited‐state dynamics of tetraphenylethylene studied by semiclassical simulation. The Journal of chemical physics 127 (9): 094307.

55 55 Prlj, A., Došlić, N., and Corminboeuf, C. (2016). How does tetraphenylethylene relax from its excited states? Physical Chemistry Chemical Physics 18 (17): 11606–11609.

56 56 Gao, Y.‐J., Chang, X.‐P., Liu, X.‐Y. et al. (2017). Excited‐state decay paths in tetraphenylethene derivatives. The Journal of Physical Chemistry A 121 (13): 2572–2579.

57 57 Cai, Y., Du, L., Samedov, K. et al. (2018). Deciphering the working mechanism of aggregation‐induced emission of tetraphenylethylene derivatives by ultrafast spectroscopy. Chemical Science 9 (20): 4662–4670.

58 58 Kokado, K., Machida, T., Iwasa, T. et al. (2018). Twist of C=C bond plays a crucial role in the quenching of AIE‐active tetraphenylethene derivatives in solution. The Journal of Physical Chemistry C 122 (1): 245–251.

59 59 Tasso, T. T., Furuyama, T., and Kobayashi, N. (2015). Dinitriles bearing AIE‐active moieties: synthesis, E/Z isomerization, and fluorescence properties. Chemistry–A European Journal 21 (12): 4817–4824.

60 60 Chung, J. W., Yoon, S. J., An, B. K. et al. (2013). High‐contrast on/off fluorescence switching via reversible E–Z isomerization of diphenylstilbene containing the α‐cyanostilbenic moiety. The Journal of Physical Chemistry C 117 (21): 11285–11291.

61 61 Yamamoto, N. (2018). Mechanisms of aggregation‐induced emission and photo/thermal E/Z isomerization of a cyanostilbene derivative: theoretical insights. The Journal of Physical Chemistry C 122 (23): 12434–12440.

62 62 Duan, P., Yanai, N., Kurashige, Y. et al. (2015). Aggregation‐induced photon upconversion through control of the triplet energy landscapes of the solution and solid states. Angewandte Chemie International Edition 54 (26): 7544–7549.

63 63 Shi, J., Aguilar Suarez, L. E., Yoon, S. J. et al. (2017). Solid state luminescence enhancement in π‐conjugated materials: unraveling the mechanism beyond the framework of AIE/AIEE. The Journal of Physical Chemistry C 121 (41): 23166–23183.

64 64 Tong, H., Dong, Y., Hong, Y. et al. (2007). Aggregation‐induced emission: effects of molecular structure, solid‐state conformation, and morphological packing arrangement on light‐emitting behaviors of diphenyldibenzofulvene derivatives. The Journal of Physical Chemistry C 111 (5): 2287–2294.

65 65 Gao, X., Peng, Q., Niu, Y. et al. (2012). Theoretical insight into the aggregation induced emission phenomena of diphenyldibenzofulvene: a nonadiabatic molecular dynamics study. Physical Chemistry Chemical Physics 14 (41): 14207–14216.

66 66 Li, Q. and Blancafort, L. (2013). A conical intersection model to explain aggregation induced emission in diphenyl dibenzofulvene. Chemical Communications 49 (53): 5966–5968.

67 67 Ruiz‐Barragan, S., Morokuma, K., and Blancafort, L. (2015). Conical intersection optimization using composed steps inside the ONIOM (QM: MM) scheme: CASSCF: UFF implementation with microiterations. Journal of Chemical Theory and Computation 11 (4): 1585–1594.

68 68 Wang, B., Wang, X., Wang, W. et al. (2016). Exploring the mechanism of fluorescence quenching and aggregation‐induced emission of a phenylethylene derivative by QM (CASSCF and TDDFT) and ONIOM (QM: MM) calculations. The Journal of Physical Chemistry C 120 (38): 21850–21857.

69 69 Jiang, M., He, Z., Zhang, Y. et al. (2017). Development of benzylidene‐methyloxazolone based AIEgens and decipherment of their working mechanism. Journal of Materials Chemistry C 5 (29): 7191–7199.

Handbook of Aggregation-Induced Emission, Volume 1

Подняться наверх