Читать книгу Handbook of Aggregation-Induced Emission, Volume 3 - Группа авторов - Страница 47

References

Оглавление

1 1 de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, et al. (1997). Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97(5): 1515–66.

2 2 McQuade DT, Pullen AE, Swager TM (2000). Conjugated polymer‐based chemical sensors. Chem. Rev. 100(7): 2537–74.

3 3 Adhikari B, Majumdar S (2004). Polymers in sensor applications. Progr. Polym. Sci. 29(7): 699–766.

4 4 Thomas SW, III, Joly GD, Swager TM (2007). Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 107(4): 1339–86.

5 5 Winnik FM, Whitten DG, Urban MW, Lopez G (2007). Stimuli‐responsive materials: polymers, colloids, and multicomponent systems. Langmuir 23(1): 1–2.

6 6 Wu J, Liu W, Ge J, Zhang H, Wang P (2011). New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem. Soc. Rev. 40(7): 3483–95.

7 7 Schaeferling M (2012). The art of fluorescence imaging with chemical sensors. Angew. Chem. Int. Ed. 51(15): 3532–54.

8 8 Lodeiro C, Capelo JL, Mejuto JC, Oliveira E, Santos HM, Pedras B, et al. (2010). Light and colour as analytical detection tools: a journey into the periodic table using polyamines to bio‐inspired systems as chemosensors. Chem. Soc. Rev. 39(8): 2948–76.

9 9 Basabe‐Desmonts L, Reinhoudt DN, Crego‐Calama M (2007). Design of fluorescent materials for chemical sensing. Chem. Soc. Rev. 36(6): 993–1017.

10 10 Demchenko AP (2009). Introduction to Fluorescence Sensing. Springer: Netherlands.

11 11 Valeur B, Berberan‐Santos MN (2012). Molecular Fluorescence: Principles and Applications. Weinheim (Germany): Wiley‐VCH.

12 12 Nadler A, Schultz C (2013). The power of fluorogenic probes. Angew. Chem. Int. Ed. 52(9): 2408–10.

13 13 Pucci A, Bizzarri R, Ruggeri G (2011). Polymer composites with smart optical properties. Soft Mat. 7(8): 3689–700.

14 14 Pucci A, Ruggeri G (2011). Mechanochromic polymer blends. J. Mater. Chem. 21(23): 8282–91.

15 15 Urban MW (2011). Handbook of Stimuli‐Responsive Materials. Weinheim, Germany: Wiley‐VCH Verlag GmbH & Co. KGaA.

16 16 Ciardelli F, Ruggeri G, Pucci A (2013). Dye‐containing polymers: methods for preparation of mechanochromic materials. Chem. Soc. Rev. 42(3): 857–70.

17 17 May PA, Moore JS (2013). Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem. Soc. Rev. 42(18): 7497–506.

18 18 Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, et al. (2001). Aggregation‐induced emission of 1‐methyl‐1,2,3,4,5‐pentaphenylsilole. Chem. Commun. (Camb. UK) (18): 1740–1.

19 19 Hong Y, Lam Jacky WY, Tang BZ (2011). Aggregation‐induced emission. Chem. Soc. Rev. 40(11): 5361–88.

20 20 Hong Y, Lam JWY, Tang BZ (2009). Aggregation‐induced emission: phenomenon, mechanism and applications. Chem. Commun. (Camb. UK) (29): 4332–53.

21 21 Hong Y, Lam Jacky WY, Tang Ben Z (2011). Aggregation‐induced emission. Chem. Soc. Rev. 40(11): 5361–88.

22 22 Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ (2014). Aggregation‐induced emission: the whole is more brilliant than the parts. Adv. Mater. (Weinheim, Ger.) 26(31): 5429–79.

23 23 Qiu Z, Liu X, Lam JWY, Tang BZ (2019). The marriage of aggregation‐induced emission with polymer science. Macromol. Rapid Commun. 40(1): 1800568.

24 24 Hu R, Kang Y, Tang BZ (2016). Recent advances in AIE polymers. Polym. J. (Tokyo, Jpn.) 48(4): 359–70.

25 25 Hu R, Lam JWY, Tang BZ. AIE‐active Polymers. John Wiley & Sons Ltd.; 2014. p. 253–83, 3 plates.

26 26 Hu R, Leung NLC, Tang BZ (2014). AIE macromolecules: syntheses, structures and functionalities. Chem. Soc. Rev. 43(13): 4494–562.

27 27 Hu YB, Lam JWY, Tang BZ (2019). Recent progress in AIE‐active polymers. Chin. J. Polym. Sci. 37(4): 289–301.

28 28 Qin A, Lam JWY, Tang BZ (2012). Luminogenic polymers with aggregation‐induced emission characteristics. Prog. Polym. Sci. 37(1): 182–209.

29 29 Pucci A, Ruggeri G, Bronco S, Bertoldo M, Cappelli C, Ciardelli F (2007). Conferring dichroic properties and optical responsiveness to polyolefins through organic chromophores and metal nanoparticles. Progr. Org. Coat. 58(2–3): 105–16.

30 30 Pucci A, Ruggeri G, Bronco S, Signori F, Donati F, Bernabò M, et al. (2011). Colour responsive smart polymers and biopolymers films through nanodispersion of organic chromophores and metal particles. Progr. Org. Coat. 72(1–2): 21–5.

31 31 Th F and Kasper K (1954). Ein konzentrationsumschlag der fluoreszenz. Z. Phys. Chem. 1(5–6): 275–7.

32 32 Yang J, Chi Z, Zhu W, Tang BZ, Li Z (2019). Aggregation‐induced emission: a coming‐of‐age ceremony at the age of eighteen. Sci. Chin. Chem. 62(9): 1090–8.

33 33 Gu J, Qin A, Tang BZ (2019). Polymers with aggregation‐induced emission characteristics. In: Tang Y, Tang BZ, editors. Principles and Applications of Aggregation‐Induced Emission. Cham: Springer International Publishing. p. 77–108.

34 34 Qi J, Chen C, Ding D, Tang BZ (2018). Aggregation‐induced emission luminogens: union is strength, gathering illuminates healthcare. Adv. Healthcare Mater. 7(20): 1800477.

35 35 Xu S, Duan Y, Liu B (2020). Precise molecular design for high‐performance luminogens with aggregation‐induced emission. Adv. Mater. 32(1): 1903530.

36 36 Chen Y, Lam JWY, Kwok RTK, Liu B, Tang BZ (2019). Aggregation‐induced emission: fundamental understanding and future developments. Mater. Hor. 6(3): 428–33.

37 37 Kenry, Duan Y, Liu B (2018). Recent advances of optical imaging in the second near‐infrared window. Adv. Mater. 30(47): 1802394.

38 38 Hu F, Xu S, Liu B (2018). Photosensitizers with aggregation‐induced emission: materials and biomedical applications. Adv. Mater. 30(45): 1801350.

39 39 Ong KH, Liu B (2017). Applications of fluorogens with rotor structures in solar cells. Molecules 22(6): 897.

40 40 Liu B (2016). Aggregation‐induced emission: a new research frontier. Small 12(47): 6427–8.

41 41 Hu R, Qin A, Tang BZ (2020). AIE polymers: synthesis and applications. Progr. Polym. Sci. 100: 101176.

42 42 Pucci A (2018). Luminescent solar concentrators based on aggregation induced emission. Israel J. Chem. 58(8): 837–44.

43 43 Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA (2005). Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes. Bioorg. Chem. 33(6): 415–25.

44 44 Haidekker MA, Theodorakis EA (2010). Environment‐sensitive behavior of fluorescent molecular rotors. J. Biol. Eng. 4(11). https://doi.org/10.1186/1754‐1611‐4‐11.

45 45 Mustafic A, Huang H‐M, Theodorakis EA, Haidekker MA (2010). Imaging of flow patterns with fluorescent molecular rotors. J. Fluoresc. 20(5): 1087–98.

46 46 Koenig M, Bottari G, Brancato G, Barone V, Guldi DM, Torres T (2013). Unraveling the peculiar modus operandi of a new class of solvatochromic fluorescent molecular rotors by spectroscopic and quantum mechanical methods. Chem. Sci. 4(6): 2502–11.

47 47 Haidekker MA, Akers W, Lichlyter D, Brady TP, Theodorakis EA (2005). Sensing of flow and shear stress using fluorescent molecular rotors. Sens. Lett. 3(1–1): 42–8.

48 48 Zhou F, Shao J, Yang Y, Zhao J, Guo H, Li X, et al. (2011). Molecular rotors as fluorescent viscosity sensors: molecular design, polarity sensitivity, dipole moments changes, screening solvents, and deactivation channel of the excited states. Eur. J. Org. Chem. 2011(25): 4773–87, S/1–S/70.

49 49 Martini G, Martinelli E, Ruggeri G, Galli G, Pucci A (2015). Julolidine fluorescent molecular rotors as vapour sensing probes in polystyrene films. Dye. Pigm. 113(0): 47–54.

50 50 Calvino C, Neumann L, Weder C, Schrettl S (2017). Approaches to polymeric mechanochromic materials. J. Polym. Sci. A Polym. Chem. 55(4): 640–52.

51 51 Herbert KM, Schrettl S, Rowan SJ, Weder C (2017). 50th anniversary perspective: solid‐state multistimuli, multiresponsive polymeric materials. Macromolecules 50(22): 8845–70.

52 52 Seeboth A, Loetzsch D, Ruhmann R, Muehling O (2014). Thermochromic polymers‐function by design. Chem. Rev. 114(5): 3037–68.

53 53 Minei P, Pucci A (2016). Fluorescent vapochromism in synthetic polymers. Polym. Int. 65(6): 609–20.

54 54 Pucci A (2019). Mechanochromic fluorescent polymers with aggregation‐induced emission features. Sensors (Swit.) 19(22).

55 55 La DD, Bhosale SV, Jones LA, Bhosale SV (2018). Tetraphenylethylene‐based AIE‐active probes for sensing applications. ACS Appl. Mater. Interf. 10(15): 12189–216.

56 56 Iasilli G, Battisti A, Tantussi F, Fuso F, Allegrini M, Ruggeri G, et al. (2014). Aggregation‐induced emission of tetraphenylethylene in styrene‐based polymers. Macromol. Chem. Phys. 215(6): 499–506.

57 57 Taniguchi R, Yamada T, Sada K, Kokado K (2014). Stimuli‐responsive fluorescence of AIE elastomer based on PDMS and tetraphenylethene. Macromolecules 47(18): 6382–8.

58 58 Wu Y, Hu J, Huang H, Li J, Zhu Y, Tang B, et al. (2014). Memory chromic polyurethane with tetraphenylethylene. J. Polym. Sci. B Polym. Phys. 52(2): 104–10.

59 59 Robb MJ, Li W, Gergely RCR, Matthews CC, White SR, Sottos NR, et al. (2016). A robust damage‐reporting strategy for polymeric materials enabled by aggregation‐induced emission. ACS Cent. Sci. 2(9): 598–603.

60 60 Caruso MM, Blaiszik BJ, Jin H, Schelkopf SR, Stradley DS, Sottos NR, et al. (2010). Robust, double‐walled microcapsules for self‐healing polymeric materials. ACS Appl. Mater. Interf. 2(4): 1195–9.

61 61 Song YK, Kim B, Lee TH, Kim JC, Nam JH, Noh SM, et al. (2017). Fluorescence detection of microcapsule‐type self‐healing, based on aggregation‐induced emission. Macromol. Rapid Commun. 38(6): 1600657.

62 62 Calvino C, Guha A, Weder C, Schrettl S (2018). Self‐calibrating mechanochromic fluorescent polymers based on encapsulated excimer‐forming dyes. Adv. Mater. 30(19): 1704603.

63 63 Song YK, Kim B, Lee TH, Kim SY, Kim JC, Noh SM, et al. (2018). Monitoring fluorescence colors to separately identify cracks and healed cracks in microcapsule‐containing self‐healing coating. Sens. Actuat. B Chem. 257: 1001–8.

64 64 Zhao W, He Z, Peng Q, Lam JWY, Ma H, Qiu Z, et al. (2018). Highly sensitive switching of solid‐state luminescence by controlling intersystem crossing. Nat. Commun. 9(1): 3044.

65 65 Qiu Z, Zhao W, Cao M, Wang Y, Lam JWY, Zhang Z, et al. (2018). Dynamic visualization of stress/strain distribution and fatigue crack propagation by an organic mechanoresponsive AIE luminogen. Adv. Mat. 30(44): 1803924.

66 66 Carlotti M, Gullo G, Battisti A, Martini F, Borsacchi S, Geppi M, et al. (2015). Thermochromic polyethylene films doped with perylene chromophores: experimental evidence and methods for characterization of their phase behaviour. Polym. Chem. 6(21): 4003–12.

67 67 Sorgi C, Martinelli E, Galli G, Pucci A (2018). Julolidine‐labelled fluorinated block copolymers for the development of two‐layer films with highly sensitive vapochromic response. Sci. Chin. Chem. 61(8): 947–56.

68 68 Bao S, Wu Q, Qin W, Yu Q, Wang J, Liang G, et al. (2015). Sensitive and reliable detection of glass transition of polymers by fluorescent probes based on AIE luminogens. Polym. Chem. 6(18): 3537–42.

69 69 Qiu Z, Chu EKK, Jiang M, Gui C, Xie N, Qin W, et al. (2017). A simple and sensitive method for an important physical parameter: reliable measurement of glass transition temperature by AIEgens. Macromolecules 50(19): 7620–7.

70 70 Han T, Gui C, Lam JWY, Jiang M, Xie N, Kwok RTK, et al. (2017). High‐contrast visualization and differentiation of microphase separation in polymer blends by fluorescent AIE probes. Macromolecules 50(15): 5807–15.

71 71 Wu J‐L, Zhang C, Qin W, Quan D‐P, Ge M‐L, Liang G‐D (2019). Thermoresponsive fluorescent semicrystalline polymers decorated with aggregation induced emission luminogens. Chin. J. Polym. Sci. 37(4): 394–400.

72 72 Jenkin ME, Saunders SM, Pilling MJ (1997). The tropospheric degradation of volatile organic compounds: a protocol for mechanism development. Atm. Env. 31(1): 81–104.

73 73 Kim YM, Harrad S, Harrison RM (2001). Concentrations and sources of VOCs in urban domestic and public microenvironments. Environ. Sci. Technol. 35(6): 997–1004.

74 74 Germain ME, Knapp MJ (2009). Optical explosives detection: from color changes to fluorescence turn‐on. Chem. Soc. Rev. 38(9): 2543–55.

75 75 Salinas Y, Martinez‐Manez R, Marcos MD, Sancenon F, Costero AM, Parra M, et al. (2012). Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev. 41(3): 1261–96.

76 76 Sun X, Wang Y, Lei Y (2015). Fluorescence based explosive detection: from mechanisms to sensory materials. Chem. Soc. Rev. 44(22): 8019–61.

77 77 Janzen MC, Ponder JB, Bailey DP, Ingison CK, Suslick KS (2006). Colorimetric sensor arrays for volatile organic compounds. Anal. Chem. 78(11): 3591–600.

78 78 Rakow NA, Suslick KS (2000). A colorimetric sensor array for odour visualization. Nature 406(6797): 710–3.

79 79 Thomas SW, Joly GD, Swager TM (2007). Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 107(4): 1339–86.

80 80 Hu R, Lam JWY, Yu Y, Sung HHY, Williams ID, Yuen MMF, et al. (2013). Facile synthesis of soluble nonlinear polymers with glycogen‐like structures and functional properties from “simple” acrylic monomers. Polym. Chem. 4(1): 95–105.

81 81 Aldred MP, Li C, Zhang G‐F, Gong W‐L, Li ADQ, Dai Y, et al. (2012). Fluorescence quenching and enhancement of vitrifiable oligofluorenes end‐capped with tetraphenylethene. J. Mater. Chem. 22(15): 7515–28.

82 82 Minei P, Ahmad M, Barone V, Brancato G, Passaglia E, Bottari G, et al. (2016). Vapochromic behavior of polycarbonate films doped with a luminescent molecular rotor. Polym. Adv. Technol. 27(4): 429–35.

83 83 Minei P, Koenig M, Battisti A, Ahmad M, Barone V, Torres T, et al. (2014). Reversible vapochromic response of polymer films doped with a highly emissive molecular rotor. J. Mater. Chem. C 2(43): 9224–32.

84 84 Iasilli G, Martini F, Minei P, Ruggeri G, Pucci A (2017). Vapochromic features of new luminogens based on julolidine‐containing styrene copolymers. Faraday Disc. 196: 113–29.

85 85 Borelli M, Iasilli G, Minei P, Pucci A (2017). Fluorescent polystyrene films for the detection of volatile organic compounds using the twisted intramolecular charge transfer mechanism. Molecules 22(8): 1306.

86 86 Guidugli N, Mori R, Bellina F, Tang BZ, Pucci A (2019). Aggregation‐induced emission: new emerging fluorophores for environmental sensing. In: Tang Y, Tang BZ, editors. Principles and Applications of Aggregation‐Induced Emission. Cham: Springer International Publishing. p. 335–49.

87 87 Cheng Y, Wang J, Qiu Z, Zheng X, Leung NLC, Lam JWY, et al. (2017). Multiscale humidity visualization by environmentally sensitive fluorescent molecular rotors. Adv. Mater. 29(46): 1703900.

88 88 Iasilli G, Francischello R, Lova P, Silvano S, Surace A, Pesce G, et al. (2019). Luminescent solar concentrators: boosted optical efficiency by polymer dielectric mirrors. Mater. Chem. Front. 3(3): 429–36.

89 89 Geervliet TA, Gavrila I, Iasilli G, Picchioni F, Pucci A (2019). Luminescent solar concentrators based on renewable polyester matrices. Chem‐Asian J. 14(6): 877–83.

90 90 Papucci C, Geervliet TA, Franchi D, Bettucci O, Mordini A, Reginato G, et al. (2018). Green/yellow‐emitting conjugated heterocyclic fluorophores for luminescent solar concentrators. Eur. J. Org. Chem. 2018(20): 2657–66.

91 91 Gianfaldoni F, De Nisi F, Iasilli G, Panniello A, Fanizza E, Striccoli M, et al. (2017). A push–pull silafluorene fluorophore for highly efficient luminescent solar concentrators. RSC Adv. 7(59): 37302–9.

92 92 Lucarelli J, Lessi M, Manzini C, Minei P, Bellina F, Pucci A (2016). N‐Alkyl diketopyrrolopyrrole‐based fluorophores for luminescent solar concentrators: effect of the alkyl chain on dye efficiency. Dye. Pigm. 135: 154–62.

93 93 Carlotti M, Fanizza E, Panniello A, Pucci A (2015). A fast and effective procedure for the optical efficiency determination of luminescent solar concentrators. Sol. Ener. 119: 452–60.

94 94 Swanson RM (2000). The promise of concentrators. Progr. Photovolt. Res. Appl. 8(1): 93–111.

95 95 Debije M (2015). Renewable energy better luminescent solar panels in prospect. Nature (Lond. UK) 519(7543): 298–9.

96 96 Debije MG, Verbunt PPC (2012). Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv. Ener. Mater. 2(1): 12–35.

97 97 Garwin RL (1960). The collection of light from scintillation counters. Rev. Sci. Instrum. 31(9): 1010–1.

98 98 Weber WH, Lambe J (1976). Luminescent greenhouse collector for solar radiation. Appl. Opt. 15(10): 2299–300.

99 99 Goetzberger A, Greube W (1977). Solar energy conversion with fluorescent collectors. Appl. Phys. 14(2): 123–39.

100 100 Krumer Z, van Sark WGJHM, Schropp REI, Donega CdM (2017). Compensation of self‐absorption losses in luminescent solar concentrators by increasing luminophore concentration. Sol. Ener. Mater. Sol. Cell. 167: 133–9.

101 101 Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ (2015). Aggregation‐induced emission: together we shine, united we soar! Chem. Rev. (Wash. USA) 115(21): 11718–940.

102 102 De Nisi F, Francischello R, Battisti A, Panniello A, Fanizza E, Striccoli M, et al. (2017). Red‐emitting AIEgen for luminescent solar concentrators. Mater. Chem. Front. 1(7): 1406–12.

103 103 Liu B, Pucci A, Baumgartner T (2017). Aggregation induced emission: a land of opportunities. Mater. Chem. Front. 1(9): 1689–90.

104 104 Kang M, Gu X, Kwok RTK, Leung CWT, Lam JWY, Li F, et al. (2016). A near‐infrared AIEgen for specific imaging of lipid droplets. Chem. Commun. 52(35): 5957–60.

105 105 Banal JL, White JM, Ghiggino KP, Wong WWH (2014). Concentrating aggregation‐induced fluorescence in planar waveguides: a proof‐of‐principle. Sci. Rep. 4: 4635/1–/5.

106 106 Banal JL, Ghiggino KP, Wong WWH (2014). Efficient light harvesting of a luminescent solar concentrator using excitation energy transfer from an aggregation‐induced emitter. Phys. Chem. Chem. Phys. 16(46): 25358–63.

107 107 Banal JL, Zhang B, Jones DJ, Ghiggino KP, Wong WWH (2017). Emissive molecular aggregates and energy migration in luminescent solar concentrators. Acc. Chem. Res. 50(1): 49–57.

108 108 Zhang B, Banal JL, Jones DJ, Tang BZ, Ghiggino KP, Wong WWH (2018). Aggregation‐induced emission‐mediated spectral downconversion in luminescent solar concentrators. Mater. Chem. Front. 2(3): 615–9.

109 109 Flores Daorta S, Proto A, Fusco R, Claudio Andreani L, Liscidini M (2014). Cascade luminescent solar concentrators. Appl. Phys. Lett. 104(15): 153901.

110 110 Altan Bozdemir O, Erbas‐Cakmak S, Ekiz OO, Dana A, Akkaya EU (2011). Towards unimolecular luminescent solar concentrators: BODIPY‐based dendritic energy‐transfer cascade with panchromatic absorption and monochromatized emission. Angew. Chem. Int. Ed. 50(46): 10907–12.

111 111 Currie MJ, Mapel JK, Heidel TD, Goffri S, Baldo MA (2008). High‐efficiency organic solar concentrators for photovoltaics. Science 321(5886): 226–8.

112 112 Carlotti M, Ruggeri G, Bellina F, Pucci A (2016). Enhancing optical efficiency of thin‐film luminescent solar concentrators by combining energy transfer and stacked design. J. Lumin. 171: 215–20.

113 113 Mori R, Iasilli G, Lessi M, Munoz‐Garcia AB, Pavone M, Bellina F, et al. (2018). Luminescent solar concentrators based on PMMA films obtained from a red‐emitting ATRP initiator. Polym. Chem. 9(10): 1168–77.

114 114 Liu B, Zhang R (2017). Aggregation induced emission: concluding remarks. Faraday Discus. 196(0): 461–72.

Handbook of Aggregation-Induced Emission, Volume 3

Подняться наверх