Читать книгу Handbook of Aggregation-Induced Emission, Volume 3 - Группа авторов - Страница 57

References

Оглавление

1 1 Bard AJ. Electrogenerated Chemiluminescence. Dekker M, editor. New York: Marcel Dekker, Inc.: New York.; 2004.

2 2 Richter MM. Electrochemiluminescence (ECL). Chem. Rev. 2004 Jun; 104(6):3003–36.

3 3 Miao W. Electrogenerated Chemiluminescence and Its Biorelated Applications. Chem. Rev. 2008; 108(7):2506–53.

4 4 Forster RJ, Bertoncello P, Keyes TE. Electrogenerated Chemiluminescence. Annu. Rev. Anal. Chem. 2009; 2:359–85.

5 5 Li L, Chen Y, Zhu J‐J. Recent Advances in Electrochemiluminescence Analysis. Anal. Chem. 2017; 89(1):358–71.

6 6 Hercules DM. Chemiluminescence Resulting from Electrochemically. Science. 1964; 145:808–9.

7 7 Santhanam KSV, Bard AJ. J. Am. Chem. Soc. 1965; 87:139.

8 8 Tokel NE, Bard AJ. Electrogenerated Chemiluminescence. IX. Electrochemistry and Emission From Systems Containing Tris(2,2’‐Bipyridine)Ruthenium(Ii) Dichloride. J. Am. Chem. Soc. 1972; 94(8):2862–3.

9 9 Lytle FE, Hercules DM. Chemiluminescence from the Reduction of Aromatic Amine Cations and Ruthenium(III) Chelates. Photochem. Photobiol. 1971; 13:123–33.

10 10 Tokel‐Takvoryan NE, Hemingway RE, Bard AJ. Electrogenerated Chemiluminescence. XIII. Electrochemical and Electrogenerated Chemiluminescence Studies of Ruthenium Chelates. J. Am. Chem. Soc. 1973; 95(20):6582–9.

11 11 Bard AJ. Electrogenerated Chemiluminescence. 2004.

12 12 Leland JK, Powell MJ. Electrogenerated Chemiluminescence: An Oxidative‐Reduction Type ECL Reaction Sequence Using Tripropyl Amine. J. Electrochem. Soc. 1990; 137:3127.

13 13 Mydlak M, Bizzarri C, Hartmann D, Sarfert W, Schmid G, De Cola L. Positively Charged Iridium(lll) Triazole Derivatives As Blue Emitters For Light‐Emitting Electrochemical Cells. Adv. Funct. Mater. 2010; 20(11):1812–20.

14 14 Lamansky S, Djurovich P, Murphy D, Abdel‐Razzaq F, Kwong R, Tsyba I, et al. Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes. Inorg. Chem. 2001; 40(7):1704–11.

15 15 Sajoto T, Djurovich PI, Tamayo A, Yousufuddin M, Bau R, Thompson ME, et al. Blue and Near‐UV Phosphorescence from Iridium Complexes with Cyclometalated Pyrazolyl Or N‐Heterocyclic Carbene Ligands. Inorg. Chem. 2005; 44(22):7992–8003.

16 16 Laird S, Hogan CF. Electrochemiluminescence of Iridium Complexes. In: Iridium(III) in Optoelectronic and Photonics Applications. John Wiley & Sons, Ltd; 2017. p. 359–414.

17 17 Kim J Il, Shin I, Kim H, Lee J. Efficient Electrogenerated Chemiluminescence from Cyclometalated Iridium(III) Complexes. J. Am. Chem. Soc. 2005; 127(Iii):1614–5.

18 18 Santhanam K, Bard A. Chemiluminescence of Electrogenerated 9,10‐Diphenylanthracene Anion Radical. J. Am. Chem. Soc. 1965; 2243:139–40.

19 19 Werner TC, Chang J, Hercules DM. The Electrochemiluminescence of Anthracene and 9,10‐Dimethylanthracene the Role of Direct Excimer Formation 1a. J. Am. Chem. Soc. 1970; 92(4):763–8.

20 20 Suk J, Wu Z, Wang L, Bard AJ. Electrochemistry, Electrogenerated Chemiluminescence, and Excimer Formation Dynamics of Intramolecular Π‐Stacked 9‐Naphthylanthracene Derivatives and Organic Nanoparticles. J. Am. Chem. Soc. 2011; 133(37):14675–85.

21 21 Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ. Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots. Science. 2002; 296(5571):1293–7.

22 22 Valenti G, Rampazzo E, Kesarkar S, Genovese D, Fiorani A, Zanut A, et al. Electrogenerated Chemiluminescence from Metal Complexes‐Based Nanoparticles for Highly Sensitive Sensors Applications. Coord. Chem. Rev. 2018; 367:65–81.

23 23 Bertoncello P, Stewart AJ, Dennany L. Analytical Applications of Nanomaterials In Electrogenerated Chemiluminescence. Anal. Bioanal. Chem. 2014; 406:5573–87.

24 24 Yu Y, Zhou M, Cui H. Synthesis and Electrochemiluminescence of Bis(2,2′‐Bipyridine)(5‐Amino‐1,10‐Phenanthroline) Ruthenium(II)‐Functionalized Gold Nanoparticles. J. Mater. Chem. 2011; 21(34):12622–5. Available from: http://xlink.rsc.org/?DOI=c1jm11843a

25 25 Chem JM, Dennany L, Gerlach M, Carroll SO, Keyes TE, Forster J, et al. Electrochemiluminescence (ECL) Sensing Properties of Water Soluble Core‐Shell Cdse/Zns Quantum Dots/Nafion Composite Films. J. Mater. Chem. 2011;13984–90.

26 26 Carrara S, Arcudi F, Prato M, Cola L De. Amine‐Rich Nitrogen‐Doped Carbon Nanodots as a Platform for Self‐Enhancing Electrochemiluminescence. Angew. Chem. Int. Ed. 2017; 56:4757–61.

27 27 Carrara S, Stringer B, Shokouhi A, Ramkissoon P, Agugiaro J, Wilson DJD, et al. Unusually Strong Electrochemiluminescence from Iridium‐Based Redox Polymers Immobilized as Thin Layers or Polymer Nanoparticles. ACS. Appl. Mater. Interfaces. 2018; 10(43):37251–7.

28 28 Carrara S, Aliprandi A, Hogan CF, De Cola L. Aggregation‐Induced Electrochemiluminescence of Platinum(II) Complexes. J. Am. Chem. Soc. 2017; 139(41):14605–10.

29 29 Miao W, Choi J‐P, Bard AJ. Electrogenerated Chemiluminescence 69: The Tris(2,2’‐Bipyridine)Ruthenium(II), (Ru(bpy)3(2+))/Tri‐N‐Propylamine (Tpra) System Revisited‐A New Route Involving Tpra* + Cation Radicals. J. Am. Chem. Soc. 2002; 124(48):14478–85.

30 30 Richter MM. Electrochemiluminescence (ECL). Chem. Rev. 2004; 104(6):3003–36.

31 31 Wang Z, Feng Y, Wang N, Cheng Y, Quan T, Ju H. Donor−Acceptor Conjugated Polymer Dots for Tunable Electrochemiluminescence Activated by Aggregation‐Induced Emission‐Active Moieties. J. Phys. Chem. Lett. 2018; 9:5296–302.

32 32 Fernandez‐Hernandez JM, Longhi E, Cysewski R, Polo F, Josel H‐P, De Cola L. Photophysics and Electrochemiluminescence of Bright Cyclometalated Ir(III) Complexes in Aqueous Solutions. Anal. Chem. 2016; 88(8):4174–8.

33 33 Rubinstein I, Bard AJ. Electrogenerated Chemiluminescence. 37. Aqueous ECL Systems Based on Tris(2,2’‐Bipyridine)Ruthenium(2+) and Oxalate or Organic Acids. J. Am. Chem Soc. 1981; 103(3):512–6.

34 34 Obeng YS, Bard AJ. Electrogenerated Chemiluminescence. 53. Electrochemistry and Emission from Adsorbed Monolayers of a Tris(bipyridyl)ruthenium(II)‐Based Surfactant on Gold and Tin Oxide Electrodes. Langmuir. 1991; 7(1):195–201.

35 35 Forster RJ, Hogan CF. Electrochemiluminescent metallopolymer Coatings: Combined Light and Current Detection in Flow Injection Analysis. Anal. Chem. 2000; 72(22):5576–82.

36 36 Spehar‐Délèze AM, Lu Y, Keyes TE, Forster RJ. Near Infrared Emitting Electrochemiluminescent Ruthenium Polymer. ECS. Trans. 2009; 16(28):69–76.

37 37 Dick JE, Renault C, Kim BK, Bard AJ. Electrogenerated Chemiluminescence of Common Organic Luminophores in Water Using an Emulsion System. J. Am. Chem. Soc. 2014; 136(39):13546–9.

38 38 Kai T, Zhou M, Johnson S, Ahn HS, Bard AJ. Direct Observation of C2O4•− and CO2•− by Oxidation of Oxalate within Nanogap of Scanning Electrochemical Microscope. J. Am. Chem. Soc. 2018; 140(47):16178–83.

39 39 Carrara S, Nguyen P, D’Alton L, Hogan CF. Electrochemiluminescence Energy Transfer in Mixed Iridium‐Based Redox Copolymers Immobilized as Nanoparticles. Electrochim. Acta. 2019; 313:379–402.

40 40 Hogan CF, Forster RJ. Mediated Electron Transfer For Electroanalysis: Transport and Kinetics in Tin Films of [Ru(bpy)2PVP10] (ClO 4) 2. Anal. Chim. Acta. 1999; 396:13–21.

41 41 Noffsinger JB, Danielson ND. Generation of Chemiluminescence upon Reaction of Aliphatic Amines with Tris(2,2’‐Bipyridine)Ruthenium(III). Anal. Chem. 1987; 59(6):865–8.

42 42 Jiang MH, Li SK, Zhong X, Liang W Bin, Chai YQ, Zhuo Y, et al. Electrochemiluminescence Enhanced by Restriction of Intramolecular Motions (RIM): Tetraphenylethylene Microcrystals as a Novel Emitter for Mucin 1 Detection. Anal. Chem. 2019; 91(5):3710–6.

43 43 Liu JL, Zhang JQ, Tang ZL, Zhuo Y, Chai YQ, Yuan R. Near‐Infrared Aggregation‐Induced Enhanced Electrochemiluminescence from Tetraphenylethylene Nanocrystals: A New Generation of ECL Emitters. Chem. Sci. 2019; 10(16):4497–501.

44 44 Sun F, Wang Z, Feng Y, Cheng Y, Ju H, Quan Y. Electrochemiluminescent resonance energy transfer of polymer dots for aptasensing. Biosens. Bioelectron. 2018; 100:28–34.

45 45 Zu Y, Bard AJ. Electrogenerated Chemiluminescence. 66. The Role of Direct Coreactant Oxidation in The Ruthenium Tris(2,2’)Bipyridyl/Tripropylamine System and the Effect of Halide Ions on the Emission Intensity. Anal. Chem. 2000; 72(14):3223–32.

46 46 Kanoufi F, Zu Y, Bard AJ. Homogeneous Oxidation of Trialkylamines by Metal Complexes and Its Impact on Electrogenerated Chemiluminescence in the Trialkylamine/Ru (bpy) 32+ System. J. Phys. Chem. B. 2001; 105:210–6.

47 47 Forster RJ, Hogan CF. Electrochemiluminescent Metallopolymer Coatings: Combined Light and Current Detection in Flow Injection Analysis. Anal. Chem. 2000; 72(22):5576–82.

48 48 Downey TM, Nieman TA. Chemiluminescence Detection Using Regenerable Tris(2,2’‐Bipyridyl)Ruthenium(II) Immobilized in Nafion. Anal. Chem. 1992; 64(3):261–8.

49 49 Knight AW, Greenway GM. Relationship Between Structural Attributes and Observed Electrogenerated Chemiluminescence (ECL) Activity of Tertiary Amines as Potential Analytes for the Tris(2,2‐Bipyridine)Ruthenium(II) ECL Reaction. A Review. Analyst. 1996; 121:101R.

50 50 White HS, Bard AJ. Electrogenerated Chemiluminescence and Chemiluminescence of the Ru(2,21‐bpy)32+‐S2o82‐ System in Acetonitrile‐Water Solutions. J. Am. Chem. Soc. 1982; 104(25):6891–5.

51 51 Han Z, Yang Z, Sun H, Xu Y, Ma X, Shan D, et al. Electrochemiluminescence Platforms Based on Small Water‐Insoluble Organic Molecules for Ultrasensitive Aqueous‐Phase Detection. Angew. Chem. Int. Ed. 2019; 58(18):5915–9.

52 52 Carrara S, Aliprandi A, Hogan CF, De Cola L. Aggregation‐Induced Electrochemiluminescence of Platinum(II) Complexes. J. Am. Chem. Soc. 2017; 139(41):14605–10.

53 53 Aliprandi A, Mauro M, Cola L De. Controlling and Imaging Biomimetic Self‐Assembly. Nat. Chem. 2016; 8:10–5.

54 54 Aliprandi A, Genovese D, Mauro M, De Cola L. Recent Advances in Phosphorescent Pt(II) Complexes Featuring Metallophilic Interactions: Properties and Applications. Chem. Lett. 2015; 44(9):1152–69.

55 55 Genovese D, Aliprandi A, Prasetyanto EA, Mauro M, Hirtz M, Fuchs H, et al. Mechano‐ and Photochromism from Bulk to Nanoscale: Data Storage on Individual Self‐Assembled Ribbons. Adv. Funct. Mater. 2016; 26(29):5271–8.

56 56 Ong JX, Yap SQ, Wong DYQ, Chin CF, Ang WH. Platinum(IV) Carboxylate Prodrug Complexes as Versatile Platforms for Targeted Chemotherapy. Chim. Int. J. Chem. 2015; 69(3):100–3.

57 57 Gao TB, Zhang JJ, Yan RQ, Cao DK, Jiang D, Ye D. Aggregation‐Induced Electrochemiluminescence from a Cyclometalated Iridium(III) Complex. Inorg. Chem. 2018; 57(8):4310–6.

58 58 Kerr E, Doeven EH, Wilson DJD, Hogan CF, Francis PS. Considering the Chemical Energy Requirements of The Tri‐N‐Propylamine Coreactant Pathways for the Judicious Design of New Electrogenerated Chemiluminescence Detection Systems. Analyst. 2016; 141:62–9.

59 59 Chang Y‐L, Palacios RE, Fan F‐RF, Bard AJ, Barbara PF. Electrogenerated Chemiluminescence of Single Conjugated Polymer Nanoparticles. J. Am. Chem. Soc. 2008; 130(28):8906–7.

60 60 Wu C, Szymanski C, McNeill J. Preparation and Encapsulation of Highly Fluorescent Conjugated Polymer Nanoparticles. Langmuir. 2006; 22(7):2956–60.

61 61 Venkatanarayanan A, Spehar‐Délèze AM, Dennany L, Pellegrin Y, Keyes TE, Forster RJ. Ruthenium Aminophenanthroline Metallopolymer Films Electropolymerized from an Ionic Liquid: Deposition and Electrochemical and Photonic Properties. Langmuir. 2008; 24(19):11233–8.

62 62 Dennany L, Forster RJ, Rusling JF. Simultaneous Direct Electrochemiluminescence and Catalytic Voltammetry Detection of DNA in Ultrathin Films. J. Am. Chem. Soc. 2003; 125(17):5213–8.

63 63 Zhou XF, Cheng W, Compton RG. Doping of Single Polymeric Nanoparticles. Angew. Chem. Int. Ed. 2014; 53(46):12587–9.

64 64 Feng Y, Sun F, Wang N, Lei J, Ju H. Ru(bpy)32+ Incorporated Luminescent Polymer Dots: Double‐Enhanced Electrochemiluminescence for Detection of Single‐Nucleotide Polymorphism. Anal. Chem. 2017; 89(14):7659–66.

65 65 Ye F, Wu C, Jin Y, Chan YH, Zhang X, Chiu DT. Ratiometric Temperature Sensing with Semiconducting Polymer Dots. J. Am. Chem. Soc. 2011; 133(21):8146–9.

66 66 Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010; 75(1):1–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19782542.

67 67 Feng Y, Dai C, Lei J, Ju H, Cheng Y. Silole‐Containing Polymer Nanodot: An Aqueous Low‐Potential Electrochemiluminescence Emitter for Biosensing. Anal. Chem. 2016; 88(1):845–50.

68 68 Dai R, Wu F, Xu H, Chi Y. Anodic, Cathodic, and Annihilation Electrochemiluminescence Emissions from Hydrophilic Conjugated Polymer Dots in Aqueous Medium. ACS. Appl. Mater. Interfaces. 2015; 7(28):15160–7.

69 69 Bertoncello P, Forster RJ. Nanostructured Materials for Electrochemiluminescence (ECL)‐Based Detection Methods: Recent Advances and Future Perspectives. Biosens. Bioelectron. 2009; 24(11):3191–200.

70 70 Suk J, Bard AJ. Electrochemistry and Electrogenerated Chemiluminescence of Organic Nanoparticles. J. Solid State Electrochem. 2011; 15(11–12):2279–91.

71 71 Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Aggregation‐Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015; 115(21):11718–940.

72 72 Sun F, Wang Z, Feng Y, Cheng Y, Ju H, Quan Y. Electrochemiluminescent Resonance Energy Transfer of Polymer Dots for Aptasensing. Biosens. Bioelectron. 2018; 100:28–34.

73 73 Dennany L, Hogan CF, Keyes TE, Forster RJ. Effect of Surface Immobilization on the Electrochemiluminescence of Ruthenium‐Containing Metallopolymers. Anal. Chem. 2006; 78(5):1412–7.

74 74 O’Reilly EJ, Keyes TE, Forster RJ, Dennany L. Insights into Electrochemiluminescent Enhancement Through Electrode Surface Modification. Analyst. 2013; 138(2):677–82.

75 75 Saremi M, Amini A, Heydari H. An Aptasensor for Troponin I Based on the Aggregation‐Induced Electrochemiluminescence of Nanoparticles Prepared from A Cyclometallated Iridium(III) Complex and Poly(4‐Vinylpyridine‐Co‐Styrene) Deposited on Nitrogen‐Doped Graphene. Microchim. Acta. 2019; 186(4):254.

76 76 Danis AS, Metera KL, Payne NA, Sleiman HF, Mauzeroll J. Bottom‐Up Characterization and Self‐Assembly of Electrogenerated Chemiluminescence Active Ruthenium Nanospheres. ChemElectroChem. 2019; 6(13):3499–506.

77 77 Danis AS, Odette WL, Perry SC, Canesi S, Sleiman HF, Mauzeroll J. Cuvette‐Based Electrogenerated Chemiluminescence Detection System for the Assessment of Polymerizable Ruthenium Luminophores. ChemElectroChem. 2017; 4(7):1736–43.

78 78 Nepomnyashchii AB, Bard AJ. Electrochemistry and Electrogenerated Chemiluminescence of BODIPY dyes. Acc. Chem. Res. 2012; 45(11):1844–53.

79 79 Nepomnyashchii AB, Cho S, Rossky PJ, Bard AJ. Dependence of Electrochemical and Electrogenerated Chemiluminescence Properties on the Structure of Bodipy Dyes. Unusually Large Separation Between Sequential Electron Transfers. J. Am. Chem. Soc. 2010; 132(49):17550–9.

80 80 Natarajan P, Schmittel M. 9,10‐Diarylanthracenes as Stable electrochemiluminescent Emitters in Water. J. Org. Chem. 2012; 77(19):8669–77.

81 81 Liu H, Wang L, Gao H, Qi H, Gao Q, Zhang C. Aggregation‐Induced Enhanced Electrochemiluminescence from Organic Nanoparticles of Donor–Acceptor Based Coumarin Derivatives. ACS. Appl. Mater. Interfaces. 2017; 9(51):44324–31.

82 82 Hong Y, Lam JWY, Tang BZ. Aggregation‐Induced Emission. Chem. Soc. Rev. 2011; 40(11):5361–88.

83 83 Murakami M, Ohkubo K, Nanjo T, Souma K, Suzuki N, Fukuzumi S. Photoinduced Electron Transfer in Photorobust Coumarins Linked with Electron Donors Affording Long Lifetimes of Triplet Charge‐Separated States. ChemPhysChem. 2010; 11(12):2594–605.

84 84 Cui L, Yu S, Gao W, Zhang X, Deng S, Zhang CY. Tetraphenylenthene‐Based Conjugated Microporous Polymer for Aggregation‐Induced Electrochemiluminescence. ACS. Appl. Mater. Interfaces. 2020; 12(7):7966–73.

85 85 Molapo KM, Venkatanarayanan A, Dolan CM, Prendergast U, Baker PG, Iwuoha EI, et al. High Efficiency Electrochemiluminescence from Polyaniline : Ruthenium Metal Complex Films. Electrochem. Commun. 2014; 48:95–8.

86 86 Yamaguchi S, Tamao K. Silole‐Containing – and – Conjugated Compounds. Dalt. Trans. 1998;3693–702.

87 87 Sartin MM, Boydston AJ, Pagenkopf BL, Bard AJ. Electrochemistry, Spectroscopy, and Electrogenerated Chemiluminescence of Silole‐Based Chromophores. J. Am. Chem. Soc. 2006; 128(31):10163–70.

88 88 Booker C, Wang X, Haroun S, Zhou J, Jennings M, Pagenkopf BL, et al. Tuning of Electrogenerated Silole Chemiluminescence. Angew. Chemie. 2008; 120(40):7845–9.

89 89 Wei X, Zhu MJ, Cheng Z, Lee M, Yan H, Lu C, et al. Aggregation‐Induced Electrochemiluminescence of Carboranyl Carbazoles in Aqueous Media. Angew. Chem. Int. Ed. 2019; 58(10):3162–6.

90 90 Zhang Y, Wang Y, Wang J, Liang XJ. Improved Pharmaceutical Research and Development with Aie‐Based Nanostructures. Mater. Horizons. 2018; 5(5):799–812.

91 91 Marsh A V., Cheetham NJ, Little M, Dyson M, White AJP, Beavis P, et al. Carborane‐Induced Excimer Emission of Severely Twisted Bis‐O‐Carboranyl Chrysene. Angew. Chem Int. Ed. 2018; 57(33):10640–5.

92 92 Jiang H, Qin Z, Zheng Y, Liu L, Wang X. Aggregation‐Induced Electrochemiluminescence by Metal‐Binding Protein Responsive Hydrogel Scaffolds. Small. 2019; 15(18):1901170.

93 93 Yang Y, Hu G‐B, Liang W‐B, Yao L‐Y, Huang W, Zhang Y‐J, et al. An AIEgen‐Based 2d Ultrathin Metal‐Organic Layer as an Electrochemiluminescence Platform for Ultrasensitive Biosensing of Carcinoembryonic Antigen. Nanoscale. 2020; 12:5932–41.

94 94 Sun CL, Chang CT, Lee HH, Zhou J, Wang J, Sham TK, et al. Microwave‐Assisted Synthesis of A Core‐Shell Mwcnt/Gonr Heterostructure for the Electrochemical Detection of Ascorbic Acid, Dopamine, and Uric Acid. ACS. Nano. 2011; 5(10):7788–95.

95 95 Wang Z, Wang N, Gao H, Quan Y, Ju H, Cheng Y. Amplified Electrochemiluminescence Signals Promoted by The Aie‐Active Moiety Of D–A Type Polymer Dots For Biosensing. Analyst. 2020; 145(1):233–9.

96 96 Liu JL, Zhuo Y, Chai YQ, Yuan R. BSA Stabilized Tetraphenylethylene Nanocrystals as Aggregation‐Induced Enhanced Electrochemiluminescence Emitters for Ultrasensitive Microrna Assay. Chem. Commun. 2019; 55(67):9959–62.

Handbook of Aggregation-Induced Emission, Volume 3

Подняться наверх