Читать книгу Perovskite Materials for Energy and Environmental Applications - Группа авторов - Страница 33

References

Оглавление

1. Neamen, D.A., Semiconductor physics and devices: basic principles, McGraw-Hill, New York, 2003.

2. Mandadapu, U., Vedanayakam, S.V., Thyagarajan, K., Babu, B.J., Optimisation of high efficiency tin halide perovskite solar cells using SCAPS-1D. Int. J. Simul. Process Model., 13, 3, 221–227, 2018.

3. Zeman, M., van den Heuvel, J., Pieters, B.E., Kroon, M., Willemen, J., Advanced semiconductor analysis, TU Delft, Delft, 2003.

4. Pieters, B.E., Krc, J., Zeman, M., May. Advanced numerical simulation tool for solar cells-ASA5, in: 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, vol. 2, IEEE, pp. 1513–1516, 2006.

5. Pieters, BE., Zeman, M., Metselaar, JW., Extraction of the defect density of states of a-Si:H using Q-DLTS. In s.n. (Ed.), Proceedings of the STW annual workshop on semiconductor advances for future electronics and sensors (SAFE 2005), 38–42, STW, 2005.

6. Zeman, M., Willemen, J.A., Vosteen, L.L.A., Tao, G., Metselaar, J.W., Computer modelling of current matching in a-Si: H/a-Si: H tandem solar cells on textured TCO substrates. Sol. Energy Mater. Sol. Cells, 46, 2, 81–99, 1997.

7. Meier, J., Dubail, S., Fluckinger, R., Fisher, D., Keppner, H., Shah, A., Intrinsic microcrystalline silicon(μc-Si:H)—A promising new thin film solar cell material. In Proceedings of the 1st World Conference on Photovoltaic energy conversion, Waikoloa, HI, USA, 5–9, December 1994.

8. Yamamoto, K., Yoshimi, M., Tawada, Y., Fukuda, S., Sawada, T., Meguro, T., Takata, H., Suezaki, T., Koi, Y., Hayashi, K., Suzuki, T., Large area thin film Si module. Sol. Energy Mater. Sol. Cells, 74, 1-4, 449–455, 2002.

9. Nádazdy, V., Durný, R., Pincik, E., Evidence for the improved defect-pool model for gap states in amorphous silicon from charge DLTS experiments on undoped a-Si: H. Phys. Rev. Lett., 78, 6, 1102, 1997.

10. Nádaždy, V. and Thurzo, I., A model of the small-signal charge DLTS response of traps distributed in both energy and space. Phys. Status Solidi (a), 127, 1, 167–177, 1991.

11. Springer, J., Poruba, A., Mullerova, L., Vanecek, M., Reetz, W., Muller, J., 3-dimensional optical model for thin film silicon solar cells. 3rd World Conference on Photovoltaic Energy Conversion, Proceedings of, 2003, vol. 2, pp. 1827–1830, 2003.

12. Krč, J., Smole, F., Topič, M., Potential of light trapping in microcrystalline silicon solar cells with textured substrates. Prog. Photovolt: Res. Appl., 11, 429–436, 2003, https://doi.org/10.1002/pip.506.

13. Fonash, S., Arch, J., Cuiffi, J., Hou, J., Howland, W., McElheny, P., Moquin, A., Rogosky, M., Tran, T., Zhu, H., A manual for AMPS-1D for windows 95/NT a one-dimensional device simulation program for the analysis of microelectronic and photonic structures, The Pennsylvania State University, USA, 1997.

14. Zhu, H., Kalkan, A.K., Hou, J., Fonash, S.J., Applications of AMPS-1D for solar cell simulation. AIP Conference Proceedings, vol. 462, pp. 309–314, 1999, https://doi.org/10.1063/1.57978.

15. Dennai Benmoussa, M. and Boukais, H.B., Simulation of hetero-junction (GaInP/GaAs) solar cell using AMPS-1D. J. Nano- Electron. Phys., 8, 1, 01009, 2016.

16. Hossain, E.S., Chelvanathan, P., Shahahmadi, S.A., Sopian, K., Bais, B., Amin, N., Performance assessment of Cu2SnS3 (CTS) based thin film solar cells by AMPS-1D. Curr. Appl. Phys., 18, 1, 79–89, 2018, https://doi.org/10.1016/j.cap.2017.10.009.

17. Stangl, R., Kriegel, M., Schmidt, M., AFORS-HET, Version 2.2, a numerical computer program for simulation of heterojunction solar cells and measurements, in: 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, vol. 2, IEEE, pp. 1350–1353, 2006, May.

18. Stangl, R., Kriegel, M., Maydell, K.V., Korte, L., Schmidt, M., Fuhs, W., AFORS-HET, an open-source on demand numerical PC program for simulation of (thin film) heterojunction solar cells, version 1.2, in: Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, IEEE, pp. 1556–1559, 2005, January2005.

19. Wurfel, P., The chemical potential of radiation. J. Phys. C: Solid State Phys., 15, 3967, 1982.

20. Fuhs, W., Korte, L., Schmidt, M., Heterojunctions of hydrogenated amorphous silicon and monocrystalline silicon. J. Optoelectron. Adv. Mat., 8, 6, 1989–1995, 2006.

21. Gudovskikh, A.S., Kleider, J.P., Stangl, R., New approach to capacitance spectroscopy for interface characterization of a-Si: H/c-Si heterojunctions. J. Non-Cryst. Solids, 352, 9-20, 1213–1216, 2006.

22. Gudovskikh, A.S., Kleider, J.P., Froitzheim, A., Fuhs, W., Terukov, E.I., Investigation of a-Si: H/c-Si heterojunction solar cells interface properties. Thin Solid Films, 451, 345–349, 2004.

23. Schaffarzik, D., Stangl, R., Laades, A., Schubert, C., Schmidt, M., Recombination analysis at the n-doped a-Si: H (n)/c-Si (p) heterojunction by means of time and intensity dependent surface photovoltage, in: Proc. PVSEC-20, 20th European Photovoltaic Conference, 2005, June.

24. Maydell, K.V., Conrad, E., Schmidt, M., Efficient silicon heterojunction solar cells based on p- and n-type substrates processed at temperatures < 220 C. Prog. Photovolt: Res. Appl., 14, 289–295, 2006, https://doi.org/10.1002/pip.668.

25. Stangl, R., Kriegel, M., Schaffarzik, D., Schmidt, M., AFORS-HET, Version 2.1, a numerical computer program for simulation of (thin film) heterojunction solar cells, in: Proc. 15th Int. Photovoltaic Sci. Eng. Conf, pp. 985–986, 2005, October.

26. Stangl, R., Froitzheim, A., Kriegel, M., Brammer, T., Kirste, S., Elstner, L., ... Fuhs, W., AFORS-HET, a numerical PC-program for simulation of heterojunction solar cells, Version 1.1 (open-source on demand), to be distributed for public use. Proc. 19th PVSEC, Paris, France, 1497, 2004.

27. Burgelman, M., Nollet, P., Degrave, S., Modelling polycrystalline semiconductor solar cells. Thin solid films, 361, 527–532, 2000.

28. Decock, K., Khelifi, S., Burgelman, M., Modelling multivalent defects in thin film solar cells. Thin Solid Films, 519, 21, 7481–7484, 2011.

29. Burgelman, M. and Marlein, J., Analysis of graded band gap solar cells with SCAPS, in: Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia, pp. 2151–2155, 2008, September.

30. Verschraegen, J. and Burgelman, M., Numerical modeling of intra-band tunneling for heterojunction solar cells in SCAPS. Thin Solid Films, 515, 15, 6276–6279, 2007.

31. Degrave, S., Burgelman, M., Nollet, P., Modelling of polycrystalline thin film solar cells: new features in SCAPS version 2.3, in: 3rd World Conference on Photovoltaic Energy Conversion, Proceedings of 2003, vol. 1, IEEE, pp. 487– 490, 2003, May.

32. Niemegeers, A. and Burgelman, M., Numerical modelling of ac-characteristics of CdTe and CIS solar cells, in: Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference-1996, IEEE, pp. 901–904, 1996, May.

33. Press, W.H., Teukolsky, S.A., Flannery, B.P., Vetterling, W.T., Numerical recipes in Fortran 77: of Fortran numerical recipes: the art of scientific computing, vol. 1, Cambridge university press, Cambridge, 1992.

34. Verschraegen, J., Khelifi, S., Burgelman, M., Belghachi, A., Numerical modeling of the impurity photovoltaic effect (IPV) in SCAPS, in: 21st European Photovoltaic Solar Energy Conference, vol. 396, WIP, 2006, September.

35. Khelifi, S., Burgelman, M., Verschraegen, J., Belghachi, A., Impurity photovoltaic effect in GaAs solar cell with two deep impurity levels. Sol. Energy Mater. Sol. Cells, 92, 12, 1559–1565, 2008.

36. Khelifi, S., Verschraegen, J., Burgelman, M., Belghachi, A., Numerical simulation of the impurity photovoltaic effect in silicon solar cells. Renew. Energy, 33, 2, 293–298, 2008.

37. Decock, K., Zabierowski, P., Burgelman, M., Modeling metastabilities in chalcopyrite-based thin film solar cells. J. Appl. Phys., 111, 4, 043703, 2012.

38. Burgelman, M., Decock, K., Khelifi, S., Abass, A., Advanced electrical simulation of thin film solar cells. Thin Solid Films, 535, 296–301, 2013.

39. Niemegeers, A., Gillis, S., Burgelman, M., A user program for realistic simulation of polycrystalline heterojunction solar cells: SCAPS-1D. Proceedings of the 2nd World Conference on Photovoltaic Energy Conversion, JRC, European Commission, juli, pp. 672–675, 1998.

40. Pauwels, H.J. and Vanhoutte, G., The influence of interface state and energy barriers on the efficiency of heterojunction solar cells. J. Phys. D: Appl. Phys., 11, 5, 649, 1978.

41. Verschraegen, J., Karakterisering en modellering met SCAPS van de CISCuT dunne-filmzonnecel, dissertation Universiteit Gent. Faculteit Ingenieurswetenschappen, 2006

42. Selberherr, S., Analysis and simulation of semiconductor devices, in: Springer Science & Business Media, 1984.

43. Marlein, J. and Burgelman, M., Empirical JV modelling of CIGS solar cells. In Proceedings of NUMOS (Int. Workshop on Numerical Modelling of Thin Film Solar Cells, Gent (B), 28-30 March 2007). 227-233, 227–233, 20072007. AU: Please provide journal title.

44. Walter, T., Herberholz, R., Müller, C., Schock, H.W., Determination of defect distributions from admittance measurements and application to Cu (In, Ga) Se2 based heterojunctions. J. Appl. Phys., 80, 8, 4411–4420, 1996.

45. Decock, K., Khelifi, S., Buecheler, S., Pianezzi, F., Tiwari, A.N., Burgelman, M., Defect distributions in thin film solar cells deduced from admittance measurements under different bias voltages. J. Appl. Phys., 110, 6, 063722, 2011.

46. Sharma, B., Mathur, A.S., Rajput, V.K., Singh, I.K., Singh, B.P., Device modeling of non-fullerene organic solar cell by incorporating CuSCN as a hole transport layer using SCAPS. Optik, 251, 168457, 2022.

47. Mathur, A.S., Upadhyay, S., Singh, P.P., Sharma, B., Arora, P., Rajput, V.K., Kumar, P., Singh, D., Singh, B.P., Role of defect density in absorber layer of ternary chalcogenide Cu2SnS3 solar cell. Optic. Mater., 119, 111314, 2021.

48. Mathur, A.S. and Singh, B.P., Study of effect of defects on CdS/CdTe heterojunction solar cell. Optik, 212, 164717, 2020.

49. Mathur, A.S., Dubey, S., Singh, B.P., Study of role of different defects on the performance of CZTSe solar cells using SCAPS. Optik, 206, 163245, 2020.

1 * Corresponding author: arpitswarupmathur@gmail.com

Perovskite Materials for Energy and Environmental Applications

Подняться наверх