Читать книгу Физика движения. Альтернативная теоретическая механика, или Осознание знания. Книга в двух томах. Том II - А. А. Астахов, Александр Алексеевич Щанкин - Страница 5

4. ЯВЛЕНИЕ КОРИОЛИСА – ФИЗИЧЕСКИЙ СМЫСЛ
4.1. Первый вариант проявления ускорения Кориолиса. Скорость относительного движения направлена вдоль радиуса вращающейся системы

Оглавление

А. Н. Матвеев в работе «Механика и теория относительности», 3-е издание, Москва, «ОНИКС 21 век», «Мир и образование», 2003 г., допущенной в качестве учебника для студентов высших учебных заведений определяет ускорение Кориолиса следующим образом (см. фотокопии ниже).




Книга написана в соответствии с программой курса физики для университетов, однако, физики в данном учебнике нисколько не больше, чем во многих других современных учебниках по физике. Форма написания книги больше соответствует справочной литературе по физике, в которой приводятся не столько физические, сколько математические описания физических явлений.

Матвеев пытается выяснить и донести до читателей «физическую сущность кориолисова ускорения», как он сам пишет на странице 403 своей книги. Однако все принципиальные выводы, касающиеся физики явления Кориолиса, подробно не анализируются. Все спорные и противоречивые моменты явления Кориолиса остаются без доказательства и разъяснений. Механизм действия ускорения Кориолиса не раскрыт. Всё показано на уровне голой математики, за которой не всегда виден физический смысл явлений, хотя в физике все должно быть наоборот.

Ускорение Кориолиса в первом варианте по Матвееву это изменение скорости тела, движущегося радиально внутри вращающейся системы в направлении, перпендикулярном радиусу вращения. Это общепринятое в классической физике определение ускорения Кориолиса.

На стр. 404 Матвеев пишет:

«Скорость вдоль радиуса Vr изменяется за это время (Δt) по направлению, а скорость Vn, перпендикулярная радиусу, изменяется как по направлению, так и по абсолютному значению. Полное изменение составляющей скорости, перпендикулярной радиусу, равно

ΔVn =Vn– Vn* cos α + Vr * Δα ≈

≈ ω * Δr + Vr * ω Δt (66.3)

где учтено, что cos α ≈ 1

Следовательно, кориолисово ускорение

wк = ω * Δr / dt + Vr * ω = 2 * Vr * ω».

Вообще говоря, поскольку поворот вектора переносной скорости происходит под действием переносного центростремительного ускорения, не имеющего отношения к поворотному ускорению Кориолиса, то векторы (Vn1) и (Vn2) можно сравнивать по абсолютной величине без учета (cos α). Иначе по тем же самым соображениям (cos α) следовало бы учитывать и при сравнении векторов (Vr). Но тогда мы вообще не увидели бы приращение (ΔVr) по направлению. При этом из классического ускорения Кориолиса автоматически исчезла бы его вторая половина, связанная с поворотом (Vr), и нам вообще не пришлось бы ничего опровергать. Однако поскольку (cos α) здесь совершенно не причём, то всё намного серьёзнее и связано с неправильными физическими представлениями классической физики о явлении Кориолиса.

Из выражения (66.3) следует, что ускорение Кориолиса – это изменение абсолютной скорости в направлении перпендикулярном радиусу, которое обеспечивается двумя самостоятельными независимыми ускорениями:

1. Ускорением, характеризующим приращение линейной скорости переносного вращения по абсолютной величине;

2. Ускорением, характеризующим приращение радиальной скорости относительного движения по направлению.

Фактически это означает, что приращение линейной скорости в направлении переносного вращения по абсолютной величине никак не сказывается на приращении радиальной скорости относительного движения по направлению, и наоборот – центростремительное ускорение, характеризующее изменение радиальной скорости относительного движения по направлению не имеет никакой корреляции с приращением линейной скорости переносного вращения по абсолютной величине. Однако в реальной действительности эти приращения тесно взаимосвязаны между собой, что проявляется, хотя бы в их равенстве по абсолютной величине. Более того можно показать, что это равенство не случайно, т.к. они представляют собой одну и ту же физическую величину.

На рисунке (4.1.1) показано, что каждая точка годографа радиальной скорости, изменяющейся по направлению, одновременно является и точкой годографа переносной скорости, изменяющейся по абсолютной величине, т.е. это один и тот же годограф.


Рис. 4.1.1


Рисунок (4.1.1) принципиально идентичен рисунку (159), приведенному в работе Матвеева (см. фотокопии выше). На нём выполнены лишь некоторые дополнительные построения, которые у Матвеева отсутствуют. В точке (А) показано традиционное расположение векторов этих скоростей, принятое в классической векторной геометрии. Операции сложения и вычитания векторов в векторной геометрии осуществляются на уровне стрелок исходных векторов. Однако результат снова переносится в точку на траектории. Поэтому мы не погрешим против истины, если перенесём вектор (Ve1) из точки (А) в точку (В) так, чтобы стрелки векторов переносной и относительной скоростей совместились в точке (В).

Далее вся полученная связка векторов (Vr1; Vе1) переносится параллельно самой себе в точку (В1), в которой тело оказалось бы, двигаясь с постоянной радиальной скоростью и с постоянной переносной скоростью (Vе1). Естественно, что при этом никакого приращения ни окружной переносной скорости по абсолютной величине, ни радиальной скорости по направлению не происходит, что соответствует сходу тела с траектории поворотного движения с постоянной поворотной скоростью и образованию девиации поворотного движения (В1, В2).

Вернём тело из точки (В1) на реальную траекторию в точку (В2), т.е. ликвидируем образровавшуюся девиацию. Для этого необходимо повернуть связку векторов (Vr1; Vе1) относительно точки (А1) с угловой скоростью переносного вращения в течение времени образования девиации. При этом совершенно очевидно, что совмещённые в одной точке стрелки связки векторов (Vr1) и (Vе1), формируют одни и те же точки искомого приращения поворотной скорости в виде общего годографа (ΔVпов=ΔVr=ΔVe), он же девиация поворотного движения.

Теперь, перенесём вектор общего годографа (ΔVпов=ΔVr=ΔVe), он же девиация поворотного движения, и вектор (Vr1) в точку (В2). При этом вектор (Vr1) превратится в вектор (Vr2), а вектор текущей окружной линейной скорости будет равен простой алгебраической сумме векторов (Vе1) и (ΔVпов=ΔVr=ΔVe), что и показано на рисунке.

Таким образом, девиация поворотного движения определяется вдоль переносной окружности и равна общему приращению радиальной скорости по направлению и окружной скорости переносного движения по величине. Это и есть общий годограф поворотной скорости, который определяет общее для этих двух скоростей ускорение поворотного движения.

Поскольку девиация поворотного движения прямо пропорциональна радиусу, то очевидно, что её абсолютная величина определяется дугой переносной окружности со средним радиусом. На рисунке (4.1.1) показано также изменение абсолютной скорости (ΔVабс.). Если бы в поворотном движении было два приращения двух составляющих так называемой поворотной скорости, то вектор (∆Vабс) более чем вдвое превышал бы наш вектор (ΔVпов = ΔVr = ΔVe). Однако, как видно на рисунке (4.1.1) он не дотягивает даже до полуторного превышения вектора (ΔVпов = ΔVr = ΔVe).

Конечно же, можно выбрать другие значения исходных векторов, при которых вектор (ΔVпов = ΔVr = ΔVe) будет значительно меньше по отношению к вектору (∆Vабс). Однако в составе годографа абсолютной скорости даже зрительно всегда несложно увидеть приращение, обусловленное именно центростремительным ускорением переносного вращения. При этом оставшаяся часть, приходящаяся на вектор (ΔVпов = ΔVr = ΔVe) вряд ли станет вдвое большей.

***

Равенство годографов (ΔVпов = ΔVr = ΔVe), показанное на рисунке (4.1.1) допускает возможность его ещё более детальной геометрической проверки через годограф абсолютной скорости (ΔVа). Очевидно, что годограф абсолютной скорости является геометрической суммой годографа переносной скорости (ΔVпер) и годографа поворотной скорости (ΔVпов). На рисунке 4.1.2 показано, что сумма годографа переносной скорости и годографа поворотной скорости в нашей версии (ΔVпов = ΔVr = ΔVe) принципиально равна годографу абсолютной скорости.


Рис. 4.1.2


Конечно, такая криволинейная векторная геометрия годографов несколько некорректна, т.к. криволинейных векторов в классической физике не существует. Однако в очень малом интервале времени этот некорректный с точки зрения классической физики треугольник годографов переносной скорости (ВС), абсолютной скорости (АС) и поворотной скорости (АВ) практически эквивалентен треугольнику прямых векторов. Главное, что сторона (АВ) криволинейного треугольника годографов (АВС) ни при каких обстоятельствах не превысит равенство (ΔVпов = ΔVr = ΔVe) вдвое, даже при распрямлении его сторон.

Идентичность приращения линейной скорости переносного вращения по абсолютной величине и относительной скорости по направлению можно показать и аналитически, что будет очередным подтверждением единства годографов переносной и относительной скорости (см. Рис. 4.1.1).

Приращение радиальной скорости относительного движения по направлению равно:

ΔVr = Vr * Δα = Vr * ω * Δt

Это выражение соответствует третьему члену выражения (66.3)

Произведение (Vr * Δt) в выражении для (ΔVr) есть не что иное, как изменение радиуса переносного вращения (Δr). Тогда выражение для (ΔVr) можно записать в виде:

ΔVr = Vr * Δα = Vr * ω * Δt = (Vr * Δt) * ω = Δr * ω

Но (Δr * ω) есть не что иное, как прирост линейной скорости переносного движения в связи с изменением радиуса переносного вращения:

ΔVл = r* ω – r* ω = (r– r1) * ω = Δr * ω

Тогда:

ΔVr = ΔVл

Аналогичным образом можно показать, что прирост абсолютной скорости в направлении линейной скорости переносного вращения по абсолютной величине есть не что иное, как прирост радиальной скорости относительного движения по направлению.

ΔVл = Vn2 – Vn1 = ω * r2 – ω * r= ω * Δr = ω * (Vr * Δt) =

= Vr * (ω * Δt) = Vr * Δα = ΔVr

То есть:

ΔVл = ΔVr

Следовательно, ускорение Кориолиса (wк) можно выразить через знак полного физического соответствия (≡), обозначающий не просто математическое равенство, а одну и ту же физическую величину. Если такого знака нет в математике, то его следует ввести, поскольку подобных ситуаций в существующей математической физике предостаточно.

wк = (при ΔVл / Δt  ΔVr / Δt) = ω * Vr

Как это ни парадоксально этот же самый математический вывод в классической физике приводится как подтверждение классической модели поворотного ускорения, а не как выражение одного и того же поворотного ускорения через взаимосвязь углового и линейного перемещения. Однако даже математическое равенство означает, прежде всего, идентичность физических величин, но никак не их кратность.

Из количественного математического описания физических явлений нельзя делать однозначные физические выводы. Самостоятельные независимые ускорения теоретически могут быть равны между собой количественно, хотя для образования такого равенства в разных самостоятельных движениях даже в течение достаточно непродолжительного времени необходимо невероятное стечение сопутствующих обстоятельств.

Полное же совпадение математических формул ускорений, в которых присутствуют одни и те же базовые физические величины в соответствии с законом сохранения истины (см. гл. 2) должно, прежде всего, свидетельствовать о том, что речь идет об одной и той же физической величине. Следовательно, в классическом ускорении Кориолиса одна и та же физическая величина учтена дважды.

Для всех без исключения криволинейных движений в природе существует только один физический механизм изменения движения по направлению (см. гл.3.3). В этом механизме можно отыскать любые элементы поворотного движения. Даже в равномерном вращательном движении проекция вектора линейной скорости, изменяющегося как по величине, так и по направлению, на радиус так же, как и в поворотном движении образует радиальное ускоренное движение.

Однако при этом никто не утверждает, что центростремительное ускорение состоит из двух независимых ускорений – ускорения по изменению направления линейной скорости вращательного движения и поступательного радиального ускорения. Нет никаких оснований утверждать это и в отношении поворотного ускорения, которое, так же, как и ускорение вращательного движения формируется из элементарных отражений.

Классическое центростремительное ускорение ассоциируется в классической физике с единым линейным ускорением, направленным к центру вращения. При этом физически идентичное ему ускорение Кориолиса, как это ни странно, раскладывается на две одинаковые по абсолютной величине линейные составляющие в одном и том же направлении, которые вопреки всякой логике и законам природы якобы самостоятельно, т.е. независимо друг от друга определяют приращение разных видов движения.

И тем более странно, что во втором варианте классического проявления ускорения Кориолиса при окружном относительном движении центростремительное ускорение равномерного вращательного движения названо в классической физике ускорением Кориолиса (см. гл. 4.3).

***

В классической модели явления Кориолиса истинная сила Кориолиса-Кеплера, которая совместно с поддерживающей силой обеспечивает статическую составляющую силы Кориолиса, отсутствует (см. гл. 3.4.3.). Но видимо опытные данные о величине силового напряжения Кориолиса в физике всё же имеются. Может быть именно поэтому, для того чтобы оправдать удвоенную по сравнению с реальным линейным геометрическим приращением поворотного движения величину классической силы Кориолиса и была придумана небылица о присутствии в составе классического ускорения Кориолиса двух одинаковых по абсолютной величине и по направлению составляющих.

Специфика центростремительного ускорения в классической модели вращательного движения состоит в том, что оно не сообщает поступательного приращения движения в направлении своего действия. Поэтому если ввести центростремительное ускорение в состав ускорения Кориолиса, то приращение поворотного движения в прямом направлении преобразования напряжение-движение, не изменится. Но центростремительная сила для образования вращательного движения в классической модели вращательного движения, безусловно, имеется. По этой причине центростремительное ускорение в составе ускорения Кориолиса идеально подходит для подгонки классической модели явления Кориолиса к опытным данным о величине классического напряжения Кориолиса, если таковые имеются.

Мы уже неоднократно отмечали, что на макроуровне в равномерном диаметрально уравновешенном вращательном движении ускорение, как таковое в каком-либо направлении действительно отсутствует. А вот при таком же равномерном движении по окружности отдельной материальной точки ускорение за счёт активных центростремительных сил, конечно же, есть, т.к. в этом случае центростремительные силы диаметрально не уравновешены.

Следовательно, в классической модели явления Кориолиса, в которой вращение вектора относительной скорости неуравновешенное, помимо затрат на приращение вектора скорости переносного вращения по абсолютной величине должны чётко обнаруживать себя отдельные затраты и на диаметрально неуравновешенное вращение вектора радиальной скорости. Даже если такое приращение движения осуществляется не в прямом видимом направлении преобразования напряжение-движение (см. гл. 1.2) его всегда можно обнаружить через годограф изменяемой скорости.

Таким образом, для того, чтобы показать, что приращение переносной скорости по абсолютной величине и приращение относительной скорости по направлению это одна и та же физическая величина, достаточно показать, что в классическом поворотном движении нет этих двух самостоятельных приращений, как нет и двойных затрат на реальную динамику поворотного движения. Это напрямую следует из физического механизма образования ускорения Кориолиса, который мы поясним с помощью рисунка (Рис 4.1.3).

В предлагаемом анализе мы, разумеется, не будем учитывать возможное обратное движение (отдачу) самого радиуса при отражении от него тела. Эта отдача, представляет собой истинную силу Кориолиса-Кеплера и полностью компенсируется половиной поддерживающей силы. Тем самым мы исключим энергетические затраты поддерживающей силы на эту компенсацию, оставив только чистые затраты энергии на реальное геометрическое ускорение Кориолиса.

Итак, рассмотрим физический механизм образования геометрического ускорения Кориолиса в чистом виде. Тем более что что в классической версии явления Кориолиса никакой истинной силы Кориолиса-Кеплера, изменяющей окружной импульс в отсутствие поддерживающей силы, нет. В классической физике это якобы происходит только за счёт изменения пресловутого момента инерции! Ё! Ну, что ж, тем легче нам будет показать отсутствие двойных затрат энергии на удвоенное классическое ускорение Кориолиса.


Рис. 4.1.3


Радиальное движение может изменить своё направление только при взаимодействии тела с вращающимся радиусом, когда он изменяет своё угловое положение по отношению к прямолинейному радиальному движению. При этом взаимодействие тела с радиусом будет происходить по типу отражения (см. Рис 4.1.3, положение 2), которое никто не подразделяет на составляющие разных движений, справедливость чего мы и поясним ниже.

Оторвавшись после отражения от физического радиуса-направляющей, тело движется по инерции, не меняя больше углового положения и абсолютной величины вектора скорости. При этом тело удаляется от отразившего его радиуса в переносном направлении со скоростью, равной проекции своей абсолютной (отражённой) скорости на переносное направление.

Одновременно тело удаляется и от центра вращения с радиальной проекцией абсолютной скорости. Однако угловое положение вращающегося физического радиуса продолжает непрерывно изменяться и после завершения взаимодействия отражения. Поэтому физический радиус постепенно догоняет вектор скорости тела по угловому положению (см. Рис. 4.1.3, положение 3).

Кроме того, все точки вращающегося радиуса имеют свою переносную скорость, которая тем больше, чем дальше она находится от центра вращения. Поэтому, как бы ни была велика отражённая инерционная скорость тела в переносном направлении, одновременно удаляющегося от центра вращения и в радиальном направлении, его рано или поздно настигнет соответственная точка на радиусе.

Другими словами в процессе радиального движения тело неизбежно переместится в область переносного вращения, в которой тангенциальная скорость точки на радиусе сопоставима со скоростью тела в этом направлении, что приведёт к новому взаимодействию. В момент новой встречи с радиусом происходит новое отражение.

Поскольку при приближении к точке встречи осуществляется постепенное сокращение разницы скоростей, то относительная скорость взаимодействия отражения в переносном направлении стремится к той, что была в начале цикла. Если этого не произойдёт после первого же отражения, то заработает механизм с отрицательной обратной связью, регулирующий одинаковую скорость отражения во всех циклах.

Суть этого механизма состоит в следующем. При неизменной угловой скорости и неизменной по абсолютной величине радиальной скорости каждое последующее отражение будет происходить при меньшем различии исходных параметров взаимодействия, которые вдруг по какой-либо причине не совпали с «первой попытки». Так будет происходить, вплоть до их полного совпадения в конце цикла.

В результате, в конце цикла относительная скорость точки на радиусе и тела в переносном направлении становится равна нулю, а скорость относительного движения поворотного движения направлена строго вдоль радиуса с прежней абсолютной величиной. На этом полный цикл формирования поворотного движения и ускорения Кориолиса заканчивается (см. Рис. 4.1.3, поз. 4), после чего начинается новый абсолютно идентичный предыдущему цикл поворотного движения.

Разумеется, это справедливо только при условии неизменности радиальной скорости относительного движения по величине и неизменности угловой скорости переносного вращения, т.е. при равномерном поворотном движении. В противном случае переменное ускорение Кориолиса, как собственно и все переменные величины, будет, непредсказуемым и естественно будет иметь разные циклы своего формирования.

Теперь рассмотрим, какие приращения получает поворотное движение в процессе своего формирования, как по своему физическому смыслу, так и по величине.

В соответствии с механизмом отражения, ускоренное удаление тела от радиуса, определяется, как проекция его ускорения на перпендикуляр к отражающему радиусу, что и есть ускорение переносной скорости по абсолютной величине. Но это есть проекция уже изменённой по направлению радиальной скорости. Следовательно, ускорение радиальной скорости по направлению и ускорение переносной скорости по величине это одна и та же физическая величина, равная ускорению отражения.

В противном случае, если допустить, что эти ускорения являются самостоятельными величинами, то угол отражения тела должен быть вдвое больше угла падения, что не соответствует действительности. А поскольку законы отражения не зависят от ошибочных теорий классической физики, то остаётся только вариант триединства ускорения отражения, ускорения радиальной скорости по направлению и ускорения переносной скорости по величине.

Естественно, что абсолютная величина каждого мгновенного ускорения отражения внутри цикла формирования ускорения Кориолиса может превышать среднее ускорение цикла не только вдвое, но и в десятки раз, что не меняет физического смысла ускорения Кориолиса. Тело не может двигаться в направлении линейной скорости переносного вращения быстрее соответственной точки на радиусе, как мяч не может иметь среднюю скорость большую средней скорости футболиста.

Если тело получит, например, в 10 раз большее мгновенное ускорение отражения, чем среднее обобщённое ускорение Кориолиса, то к моменту отрыва от радиуса оно наберёт и в 10 раз большую скорость. Но при этом и радиусу, вращающемуся с постоянной угловой скоростью, понадобится в 10 раз большее время, чтобы догнать тело. При этом среднее ускорение Кориолиса при неизменной угловой скорости и неизменной величине скорости относительного движения количественно останется неизменным:

ак = 10 * Vе / (10 * t) = Vе / t

Физическая сущность ускорения Кориолиса не изменится, даже если в связи с переменной угловой скоростью переносного вращения и с переменной относительной скоростью, все отражения будут абсолютно разными по абсолютной величине. Даже если все отражения будут разными, их ускорения не перестанут быть ускорениями отражения, которые одновременно определяют, как изменение направления отражённого вектора скорости, так и вектора скорости нормального удаления тела от отражающей поверхности независимо от величины скорости.

Помимо иллюстрации, показанной на рисунке (4.1.1), в этом можно ещё раз убедиться графически на рисунке (4.1.3), на котором это показано несколько иным способом. Но это лишь делает обе иллюстрации только более достоверными. Из классической физики, а именно из понятия годографа известно, что центростремительное ускорение – это линейная скорость линейной скорости. Поэтому на рисунке (4.1.3, позиция 4) вектор ускорения по изменению радиальной скорости по направлению (ar), как ему и положено быть по определению, размещён вдоль касательной к годографу вектора радиальной скорости (Vr).

Далее, если в конец вектора радиальной скорости параллельно самому себе перенести ещё и вектор абсолютного ускорения, то можно увидеть, что вектор (ar) в точности совпадает с вектором (ae), как с проекцией той же самой (aабс) на ту же самую касательную к тому же самому годографу. Это свидетельствует о том, что скорости (Vе) и (Vr) имеют общий годограф, а вектор (ar) это такая же проекция абсолютной скорости, как и вектор (ae).

При этом один вектор (aабс) не может иметь две одинаковые проекции на одно и то же направление. Следовательно, векторы (ae) и (ar) это одна и та же физическая величина, которая и является ускорением Кориолиса.

Как видно, приведённая на рисунке (4.1.3) геометрия динамики поворотного движения учитывает не только геометрию прямого перемещения материи в пространстве в виде прямого преобразования напряжение-движение, но и непрямое преобразование силы в движение, которое в большинстве случаев можно определить не по прямой геометрии приращения физической траектории, а только через абстрактный годограф скорости.

Так, например, радиальное центростремительное ускорение в классической физике не имеет под собой реального приращения радиального движения тела и определяется только через годограф линейной скорости. Поэтому наличие общего годографа скорости (Vе) и (Vr) вне всяких сомнений свидетельствуют о том, что векторы (ae) и (ar) это одна и та же физическая величина.

Таким образом, поскольку две половинки классического ускорения Кориолиса это одна и та же физическая величина, то коэффициент при ускорении Кориолиса равен «единице», но никак не «двойке».

При этом напряжение Кориолиса по абсолютной величине действительно соответствует классической силе Кориолиса (см. гл. 3.4.2). Однако половина этого напряжения не реализуется в движение тела. Она компенсируется истинной силой Кориолиса-Кеплера, а энергия этого напряжения рассеивается среди элементов радиуса, тела и окружающей среды.

В классической физике нет истинной силы Кориолиса-Кеплера. Поэтому для того, чтобы оправдать полную энергию реального напряжения Кориолиса и была придумана сказка удвоенного ускорения Кориолиса! Ё!

***

Выводом формулы ускорения Кориолиса занимались множество авторов. Однако, несмотря на все перечисленные выше противоречия классической модели поворотного движения, формула ускорения Кориолиса в выводах всех авторов неизменно привязана к результату, определяющемуся исторически сложившейся неправильной оценкой ускоренного геометрического приращения поворотного движения.


Рис. 4.1.5


В выводе формулы для ускорения Кориолиса, представленном в одном из многочисленных справочников по физике для высшей школы (см. Рис. 4.1.5), ускорение Кориолиса определяется как ускорение эквивалентного прямолинейного равноускоренного движения по формуле пути (S) для прямолинейного равноускоренного движения.

Мы не будем уточнять библиографию этого справочника, т.к. все они как две капли воды повторяют одну и ту же ошибку классической физики и соответственно высших школ всех времён и народов. Приведем дословно выдержку из справочника:

«Пусть тело (Б), находящееся на расстоянии (А) от неподвижной точки (О), движется в направлении точки (В) со скоростью (Vр). При отсутствии вращения тело (Б) через время (t) оказалось бы в точке (В). Так как направляющая (ОВ), вдоль которой движется тело, вращается в направлении (С), то фактически через время (t) тело (Б) окажется в точке (С) пройдя путь равный дуге окружности (ВС)».

Таким образом, ускорение Кориолиса в классической физике определяется через дугу (ВС), которую предлагается считать расстоянием, пройденным с ускорением Кориолиса. Причем никаких пояснений, на каком основании дуга (ВС) принимается за путь, пройденный с ускорением Кориолиса, в справочнике не приводится. Можно лишь предположить, что дуга (ВС) ассоциируется с девиацией поворотного движения.

Девиация это академическое отклонение тела от реальной траектории движения в случае прекращения действия ускорения за период движения без ускорения. Чтобы вернуть тело после движения с постоянной скоростью, которую оно имело на момент прекращения действия ускорения на реальную траекторию движения необходимо обеспечить ему такое же приращение движения, дефицит которого образуется за время отсутствия ускорения.

Очевидно, что ускорение по преодолению девиации, образующейся в достаточно малом интервале времени в некотором приближении соответствует реальному ускорению криволинейного движения, по крайней мере, по абсолютной величине. В общем случае девиация в заданном интервале времени представляет собой отклонение прямолинейной траектории, которая пройдена с учетом постоянной скорости, достигнутой на момент начала образования девиации от реальной траектории, по которой тело движется с той же начальной скоростью, но с учетом реального ускорения в дальнейшем.

Причем поскольку прямолинейное движение с постоянной скоростью, равной начальной скорости образования девиации осуществляется по единственной касательной к абсолютной траектории, то в общем случае отклонение прямолинейного движения однозначно определяется по отношению к единственно возможной траектории абсолютного движения. В поворотном движении такой определенности нет, т.к. в любом сколь угодно малом интервале времени радиальное движение пересекает бесконечное множество окружностей переносного вращения, вдоль которых может быть определена своя текущая мгновенная девиация.

Однако в начале настоящей главы было показано (см. Рис. 4.1.1), что общее приращение поворотного движения для полного приращения радиуса (∆r), пересекающего бесконечное множество переносных окружностей, вдоль которых может быть определена своя текущая мгновенная девиация, определяется суммой девиаций вдоль всех промежуточных переносных окружностей поворотного движения. Эта сумма определяется дугой окружности со средним радиусом.

На (Рис. 4.1.6) схематично изображена структура девиации поворотного движения в заданном интервале времени. Очевидно, средняя девиация поворотного движения эквивалентна дуге окружности (ЖЗ) со средним радиусом переносного вращения (Rср) за вычетом дуги (БГ), соответствующей линейному поступательному перемещению за счёт начальной линейной скорости переносного вращения (VлБ).

Элементарные окружные участки переносного вращения реальной траектории с радиусами большими среднего радиуса (Rср) больше соответствующих им участков дуги (ЖЗ), в то время как элементарные окружные участки с меньшими радиусами, меньше соответствующих участков дуги (ЖЗ). Однако в силу прямой пропорциональности величины радиуса и длины окружности общая сумма окружных участков вдоль кривой (БС) равна длине дуги (ЖЗ).


Рис. 4.1.6


С учётом изложенного определим линейное ускорение, эквивалентное ускорению Кориолиса (ак) через девиацию поворотного движения. При этом, поскольку в рассматриваемом случае дуга (ЖЗ), кроме девиации поворотного движения включает в себя отрезок, пройденный с начальной линейной скоростью (Vлб), применим формулу равноускоренного движения для пути (S = ЖЗ) с учетом начальной скорости, являющейся постоянной составляющей равноускоренного движения.

S = VлБ * t + ак * t/ 2 (4.1.1)

Где VлБ – линейная скорость точки (Б)

Тот же самый путь можно определить, как суммарную длину элементарных участков поворотного движения вдоль траектории (БС), из которых и складывается в конечном итоге девиация поворотного движения с учетом постоянной начальной линейной скорости, равной дуге (БГ).

Радиус дуги (ЗЖ) равен среднему радиусу между начальным и конечным радиусом поворотного движения. Обозначим его (Rср):

Rср = (ОС + А) / 2 (4.1.2)

Очевидно, что:

ОС = А + Vр * t (4.1.3)

Подставляя (4.3) в (4.2) получим:

Rср = A + Vр * t / 2 (4.1.4)

Путь (S), выраженный через угловую скорость (ω), определится выражением:

S = Rср * ω * t (4.1.5)

Подставляя (4.1.4) в (4.1.5) и приравняв (4.1.1) и (4.1.5) получим:

Б * t + ак * t/ 2 = (А + Vр * t / 2) * ω * t

или

2 * VлБ * t + ак * t2 = 2 * А * ω * t + Vр *ω * t2

или

2 * VлБ / t + ак = 2 * А * ω / t + Vр * ω (4.1.6)

Отсюда находим ускорение Кориолиса (ак):

ак = 2 * А * ω / t + Vр * ω – 2 * Vлб / t (4.1.7)

Заметим, что произведение А*ω есть не что иное, как (VлБ). Произведя замену, получим выражение (4.1.8), в котором отсутствует начальная линейная скорость, т.е. ускорение Кориолиса зависит только от угловой скорости переносного вращения и линейной скорости относительного движения:

ак = ω * Vр (4.1.8)

Выражение (4.1.8), полученное с учётом реального изменения радиуса поворотного движения отличается от формулы (4.1.9) для классического ускорения Когриолиса (ак):

ак = 2 * Vр * ω (4.1.9)

Авторы не учли, что в любом промежутке времени девиация поворотного движения прямо пропорциональна радиусу, т.е. реальный путь, пройденный телом за счет ускорения Кориолиса ровно вдвое меньше длины дуги (ВС) с максимальным радиусом за вычетом дуги (БГ), равной длине пути, пройденного с начальной линейной скоростью (Vлб).

В случае изменения направления движения тела (Б) на противоположное, т.е. к центру вращения выражение для (Rср) приобретет вид:

Rср = А – V * t / 2 (4.1.12)

S = VлБ * t – ак * t/ 2 (4.1.13)

Тогда получим для (ак):

 ак = 2 * VлБ / t – 2 * А * ω / t + V * ω (4.1.14)

или

 ак = ω * Vр (4.1.15)

***

Поскольку формулы ускорения Кориолиса (4.1.8) и (4.1.15) соответствуют приращению либо только линейной скорости относительного движения по направлению, либо только приращению линейной скорости переносного движения по абсолютной величине, то формулу ускорения Кориолиса намного проще вывести через прирост линейной скорости переносного вращения.

Пусть тело (Б) движется (см. рис. 4.1.5) вдоль радиуса в направлении точки (В) с постоянной радиальной скоростью (Vр). За время (t) – время прохождения пути (БС) линейная скорость движения по окружности увеличится от линейной скорости точки (Б) – (Vлб) до линейной скорости точки (С) – (Vлс). Разгон происходит под воздействием направляющей (ОВ) на тело (Б) с силой эквивалентной силе Кориолиса (Fк) и ускорением Кориолиса (ак). Ускорение определяется как прирост линейной скорости за единицу времени (t):

ак = (VлС – VлБ) / t (4.1.16)

Если выразить линейные скорости через угловую скорость получим:

ак = (ω * (А + Vр * t) – ω * А) / t (4.1.17)

или:

ак = ω * Vр (4.1.18)

В некоторых случаях радиальное относительное движение может осуществляться с ускорением. Это необходимо учитывать при определении ускорения Кориолиса. Рассмотрим случай равноускоренного радиального движения.

Вернемся еще раз к формуле (4.16):

ак = (VлС – VлБ) / t (4.1.16)

Запишем выражение для линейной (окружной) скорости в точке (Б):

Б = ω * А (4.1.19)

И для линейной (окружной) скорости точки (С):

С = ω * (А + Vр * t) (4.1.20)

Здесь (Vр) – радиальная скорость с учетом радиального ускорения.

Скорость (Vр) можно найти через радиальное ускорение. Так как ускорение в общем случае может меняться, найдем среднюю величину радиального ускорения (ар) на участке (БС):

ар = (арс + арб) / 2 (4.1.21)

Тогда радиальная скорость с учетом радиального ускорения определится выражением:

Vр = Vрн + (арс + арб) * t/2 (4.1.22) где: Vрн – радиальная скорость начальная.

Подставим (4.22) в (4.20):

С = ω * (А + (Vрн + (арс + арб) * t / 2) * t) =

= ω * А + ω * t * Vрн + ω * арс * t/ 2 + ω * арб * t2/2 (4.1.23)

Подставим (4.23) и (4.19) в (4.16):

ак = ω * А / t + ω * Vрн + ω * арс * t / 2 + ω * арб * t / 2 – ω * А / t

или формула для ускорения Кориолиса при ускоренном радиальном движении примет вид:

ак = ω * Vрн + ω * t * (арс + арб) / 2 (4.1.24)

Как следует из выражения (4.8) и (4.15), девиация поворотного движения не зависит от начальной линейной скорости переносного вращения, т.к. начальная скорость есть величина постоянная. Поэтому приращение поворотного движения в каждом минимальном интервале времени, начинающегося не с нулевого радиуса эквивалентно приращению поворотного движения с нулевого радиуса. На (Рис.4.1.7) графически пояснено определение девиации поворотного движения с нулевого радиуса поворота без учёта начальной линейной скорости переносного вращения.


Рис. 4.1.7


В соответствии с положениями теоретической механики движение по любой криволинейной траектории может быть достигнуто одним поступательным и одним вращательным движением (см. Рис. 4.1.7). Следовательно, общий путь сложного движения раскладывается на три составляющие: на путь переносного движения (О-О1), путь относительного движения (О1-В = О1-А) и на поворотный путь (ВС).

В соответствии с классической схемой криволинейного движения поступательное движение по траектории переносного движения (О-О1) и вращательное движение в точке переносной траектории, соответствующей конечному моменту рассматриваемого интервала времени в точке (О1) осуществляются с учётом завершённого в рассматриваемом интервале времени относительного движения (ОА).

При этом дуга (ВС), соответствующая максимальному радиусу поворота в рассматриваемом интервале времени принимается за девиацию поворотного движения, в то время как реальный радиус поворотного движения растёт линейно и достигает максимального радиуса поворота только к концу рассматриваемого интервала времени. Таким образом, классическая схема сложного движения не отражает реальной действительности.

В предложенной академической схеме сложного движения классический принцип разложения абсолютной траектории на составляющие, соответствующие каждому виду движения полностью сохраняется. Однако при этом учитывается реальный путь, пройденный с ускорением Кориолиса, равный сумме окружных участков синей кривой (О1-С) или длине дуги (DN).

Таким образом, полное геометрическое ускорение Кориолиса количественно соответствует линейному ускорению в направлении линейной скорости переносного вращения или ускорению по изменению направления радиальной скорости относительного движения каждому в отдельности, что полностью соответствует приведённому выше механизму формирования ускорения Кориолиса и физическому смыслу ускорения Кориолиса в нашей версии.

***

Аналогичный геометрический вывод ускорения Кориолиса приведен в другом справочнике по физике (Х. Кухлинг, «Справочник по физике», МОСКВА, «МИР» 1983).

«Перемещение тела в радиальном направлении равно r = vt. За то же время точка, удаленная от центра вращения на расстояние r, пройдет по дуге окружности путь s = rωt. Подставив сюда выражение для r, получим s = vtωt = vωt2. Отсюда следует, что s ~ t2, т.е. движение происходит ускоренно, а s = аt2/2. Таким образом, vωt= аt2/2, следовательно, ускорение Кориолиса равно ак = 2vω»

(см. Рис. 4.1.8).


Рис. 4.1.8


Как и в большинстве случаев описания физических явлений в современной физике, в выводе Кухлинга какие-либо физические обоснования ускорения Кориолиса отсутствуют. У Кухлинга нет никаких пояснений, из каких соображений путь (s) увязывается с приращением, полученным непосредственно за счет ускорения Кориолиса, кроме некорректной с физической точки зрения фразы:

«За то же время точка, удаленная от центра вращения на расстояние r, пройдет по дуге окружности путь s = rωt».

Точка, удаленная от центра вращения на расстояние (r) действительно пройдет указанное Кухлингом расстояние. Однако теоретическое обоснование соответствия пути (s = rωt) девиации поворотного движения у Кухлинга, как и других авторов по сути дела отсутствует.

***

В приведенных выше классических геометрических выводах поворотного ускорения Кориолиса радиальное движение осуществляется в направлении от центра вращения. При движении к центру вращения классическая логика определения ускорения Кориолиса, заложенная в геометрические модели девиации поворотного движения приводит к полному абсурду. Например:

Пусть тело из точки (Б) (см. рис. 4.1.5) движется к центру вращения вдоль направляющей (ОБ). В соответствии с классической логикой определения девиации поворотного движения при отсутствии вращения тело (Б) через время (t) оказалось бы в точке (К). Однако так как направляющая (ОБ), вдоль которой движется тело, вращается в направлении (Г), то фактически через время (t) тело (Б) окажется в точке (Д) пройдя путь равный дуге окружности (КД).

Таким образом, в соответствии с классической же логикой при радиальном движении к центру вращения за девиацию поворотного движения должна приниматься дуга окружности с минимальным радиусом в рассматриваемом интервале времени. Очевидно, что ускорение Кориолиса, определенное через приращение поворотного движения, равного дуге окружности с минимальным радиусом, должно быть вдвое меньше ускорения, определенного через средний радиус радиального движения и вчетверо меньше классического ускорения Кориолиса.

Между тем в реальной действительности при смене направления радиального движения и при неизменных остальных параметрах сложного движения ни направление поворотного ускорения, ни его абсолютная величина не изменяется (см. гл. 8).

Физика движения. Альтернативная теоретическая механика, или Осознание знания. Книга в двух томах. Том II

Подняться наверх