Читать книгу Tecnología del color - AA.VV - Страница 10

Оглавление

2. Sistemas de gestión del color

2.1 Introductión: ¿qué es la tecnología del color?

Para la mayoría de nosotros es incuestionable que nos encontramos inmersos en una gran revolutión tecnológica con la aparición de las tecnologías derivadas del estudio fundamental de la materia efectuado durante el siglo pasado, de aplicaciones especrficas de la física del estado sólido, de la optoelectrónica u otras disciplinas más que han permitido el estallido sociotecnológico de la microelectrónica y la informática. El fenómeno sociocultural asociado a esta revolutión tecnológica es la multimedia y términos asociados, como Internet, pero a niveles más cientrficos, todo este campo de conocimiento y aplicación tecnológica de la imagen recibe el nombre de Imaging, Imaging Science, o ciencias de la imagen.

En la era de la ofimática (Desktop Publishing), creatión electrónica de documentos en los que se combinan texto, imagen (y sonido), éstos se procesan, se transportan y se visualizan dentro de una amplia variedad de formas (fig. 2.1). En primer lugar, si necesitamos insertar algún tipo de imagen sobre el documento electrónico, nos encontramos con que tenemos una gran variedad de procedimientos para adquirir o captar una imagen en formato digital. Si suponemos que partimos de una escena real, ésta puede captarse mediante una cámara fotográfica conventional (fotoquímica) o de forma pictórica. Ahora bien, los formatos de estas primeras reproducciones del color de la escena no están en formato digital. Por eso, las opciones de captura digital de la escena son mediante cámaras digitales, videocámaras o escáneres, para registrar la copia fotográfica conventional, en formato papel o diapositiva, y la representatión estilística de la escena. Sin embargo, también existen otros medios para adquirir imágenes digitales, ya sea mediante la creatión artística por ordenador mediante aplicaciones informáticas de diseño gráfico, o bien mediante la importatión de archivos digitales de imágenes vía red local o Internet.


Fig. 2.1 Cadena completa de reproducción del color de una imagen.

El ámbito del tratamiento del documento electrónico es enorme: abarca la configuración de las páginas, la longitud del documento, la colación, a simple o doble cara, el color, la calidad de la imagen, el acabado y la encuadernación. Si el entorno de la oficina está conectado por red informática, aparecen nuevas cuestiones ligadas con la comunicación del medio informático –protocolo o lenguaje de comunicación, formato del fichero, lenguaje de descripción de las páginas, compresión/descompresión, administración del trabajo, interacción máquina-usuario, y controladores de los dispositivos/periféricos– que deben también tenerse en cuenta. Los sistemas de adquisición y tratamiento digital de la imagen procesan la información electrónica desde varias fuentes; las imágenes pueden proceder de un entorno local de red, de un dispositivo/periférico remoto, de estaciones de trabajo diferentes en el tratamiento del color, o de un escáner local. Después del procesado, un documento se comprime y se transmite, generalmente a varios lugares, por comunicación en red para la visualización, la edición o la impresión del mismo (fig. 2.1). Más aún, la tendencia en la industria se mueve hacia un entorno abierto, a diferencia del entorno cerrado del pasado. Esto significa que los dispositivos como escáneres, cámaras digitales, videocámaras, computadoras, estaciones de trabajo, pantallas de visualización, módems e impresoras procedentes de diferentes fabricantes se ensamblarán en un único sistema, pero también con sus peculiaridades, según las preferencias del usuario, profesional o no, de ahí el impacto sociotecnológico de la multimedia.

La tarea de disponer de un lenguaje común de comunicación entre los componentes del sistema, independientemente del sistema de control/operación, formato del fichero, lenguaje de descripción de las páginas y contenido de la información, es enorme, y los primeros pasos para conseguir esto se vienen llevando a cabo desde hace sólo unos diez años aproximadamente. En principio, el intercambio o la comunicación no debería causar alteración o pérdida de información. Sin embargo, en la estructura de un documento se encuentran textos principalmente, gráficos y tipos diferentes de imágenes, cada uno de ellos con características y representaciones distintas como el código ASCII (American Standard Code for Information Interchange) para el texto, vectores para los gráficos y código barrido (raster) para las imágenes. Cada tipo de imagen y sus atributos asociados, como la fuente de letra, el tamaño de la misma, el tipo de tramado de impresión (halftone), el nivel de gris, la resolución y el color tienen que tratarse de forma diferente. En un entorno tan complejo, es muy probable que se den bastantes problemas de compatibilidad cuando una imagen haya de capturarse o registrarse, transmitirse, visualizarse y transferirse. En los capítulos siguientes plantearemos solamente el aspecto del tratamiento del color en la imagen caracterizada tanto analógica como digitalmente denominado Color Imaging, que traduciremos al castellano como tecnología del color (Sharma, Trussell 1977a). Si bien este término lo hemos acuñado directamente al control del color en las tecnologías multimedia, también merecen incluirse por méritos históricos todos los aspectos de la colorimetría industrial clásica, como la tinción mediante colorantes y pigmentos, el control colorimétrico en alimentos, etc.

El concepto de calidad total de una imagen en color es subjetivo, porque el color es una sensación visual consciente. No obstante, veremos a lo largo de estos capítulos que la calidad en color de una imagen puede ajustarse a criterios objetivos que tienen en cuenta los aspectos perceptuales del color explicados ya en el capítulo anterior. Desde los albores de la Imaging Science, se determinó que existen cuatro áreas para la calidad total de una imagen en color (Farrell 1998, Jacobson 1995, Kang 1997: 269-270, Shaw 1999):

1. La reproducción de niveles de intensidad (balance de grises –tone–) y del color: referente a los atributos perceptuales de claridad, tono y croma de la imagen original con respecto a los de la imagen reproducida.

2. Los patrones de interferencia: que pueden ser aleatorios o periódicos, e incluyen por ejemplo el efecto moiré, marcas de agua, aparición de bandas, etc.

3. La definición de la imagen: referente a la nitidez y resolución del detalle fino de la imagen.

4. Las características de la superficie: incluye el brillo, la textura, la rugosidad, etc.

Estas cuatro áreas se pueden atribuir a la igualación/reproducción del color entre original/referencia/estándar y copia/muestra y a la estructura de la imagen. La reproducción de niveles de intensidad y del color es una consecuencia directa de la igualación/reproducción del color. Los factores que afectan a la igualación/reproducción del color son la transformación de color, la gama de colores reproducibles (gamut mapping), las condiciones de visualización y el medio de soporte para la imagen; conceptos que se presentarán en este capítulo. Los patrones de interferencia y la definición en la imagen son aspectos de la imagen que van ligados a las técnicas de procesado de la misma. Los factores que afectan a la estructura de la imagen son el muestreo (sampling), la cuantización, la compresión y la técnica del tramado impreso (halftoning). Las características de la superficie de la imagen están afectadas principalmente por el medio de soporte. Todos estos factores no son absolutamente independientes, sino que se encuentran bastante interrelacionados, por lo que son materia de investigación.

Veamos, como análisis final de este apartado, el diagrama de flujo del pro-ceso completo de impresión en artes gráficas (Agfa 1995) (fig. 2.2). Si partimos de una imagen original, codificada con primarios sustractivos CMY, como por ejemplo una escena fotografiada de forma convencional y reproducida en modo papel (print), el primer paso en la cadena de la reproducción del color del original es la captación del mismo, proceso que siempre será de carácter aditivo, es decir, se codifica la imagen con primarios aditivos RGB. Tras esta etapa, se pasa a la del procesado de la imagen, en el que obligatoriamente se ha de comprobar o controlar el balance de blanco (¿cómo se ha capturado el blanco del original?), el balance de contrastes o grises (¿aparece la copia en términos generales más oscura o más clara que el original?) y las diferencias de color (corrección de color). Tras este proceso, siempre obligatorio, se procede a la codificación o registro de la imagen reproducida en formato CMYK, porque la transferencia final de toda la información de color de la copia se pasa a una imprenta, dispositivo que funciona con primarios sustractivos.


Fig. 2.2 Proceso completo de reproducción del color en artes gráficas.

Antes de transferir la copia a reproducir a la sección de imprenta, es necesario comprobar si el procesado inicial sobre la imagen captada ha sido efectivo. Esto se puede realizar de varias maneras: bien directamente en pantalla o monitor, con el inconveniente de que este dispositivo codifica el color en modo aditivo, o bien mediante preimpresión en modo offset (convencional) u otros medios. Como, generalmente, la igualación prueba-estándar del cliente no será satisfactoria al 100 %, urge la necesidad de efectuar los últimos retoques sobre el fichero-imagen procesado inicialmente. Para ello, lo más conveniente es efectuar las correcciones de forma separada sobre los canales de color cian (C), magenta (M), amarillo (Y) y negro (K) (Margulis 1995). Tras estos retoques que, normalmente, se basan en la experiencia de los diseñadores gráficos, se procede al montaje de las cuatro separaciones de la copia para su reproducción por imprenta en modo offset o cualquier otro método. Si todos los procesos de la cadena se han ejecutado de forma correcta, el cliente no distinguirá ninguna diferencia de color entre su estándar y la copia y, por tanto, la relación comercial cliente-empresa se habrá efectuado de forma satisfactoria. (Tal como comentábamos anteriormente, quedaría incluir en el proceso de la reproducción los aspectos estructurales de la imagen, como la resolución o la nitidez u otros, que pueden provocar que el cliente rechaze la buena reproducción en color de la copia. Pero dichos aspectos van a quedar excluidos de los objetivos de este libro. Supondremos a partir de ahora que tales aspectos estructurales de reproducción serán perfectamente controlados.)

Si todos los dispositivos de tratamiento del color del proceso anterior de reproducción fueran de la misma naturaleza, todos aditivos o todos sustractivos; si los primarios de codificación del color de la imagen reproducida fueran ideales (Hunt 1995: 177-193); y si no existieran problemas de compatibilidad entre los lenguajes de comunicación del color, entre las estaciones de trabajo o computadoras y las aplicaciones informáticas de control del color que se escalonan en todo el proceso; no sería necesario efectuar pruebas ni retoques antes de la impresión final, ni que el maestro-diseñador o maestro-impresor adquiriera a través de bastantes años algunas reglas empíricas sobre el retoque del color que, en cualquier caso, no admiten una teoría física/química y matemática bien definida. Por tanto, el resto del capítulo intentará describir de forma objetiva la base subyacente de este problema sobre la gestión o administración del color en las tecnologías multimedia y analizar los aspectos fundamentales para solventarlo o, en todo caso, minimizarlo.

2.1.1 Espacios de color dependientes del dispositivo

El problema principal del procesado de la información electrónica de una imagen es la consistencia del color en el sistema de tratamiento: la apariencia del color de las imágenes de un documento debería permanecer constante cuando todo el documento, y las imágenes insertadas en él, se transfiere a dispositivos/periféricos diferentes y pasa por transformaciones de color, de ahí el nombre de sistemas de gestión del color (Color Management Systems: CMS).

El problema principal de partida es comprender qué significa espacio de representación del color dependiente del dispositivo. La descripción básica sobre el reto de los sistemas de gestión del color es el control de la reproducción del color de una imagen. Existen dos metodologías de reproducción: la aditiva y la sustractiva, RGB frente a CMY o CMYK. Por tanto, los dispositivos o periféricos de control del color –escáneres, cámaras, pantallas CRT o LCD, imprentas, impresoras de chorro de tinta, de sublimación o láser– deben ajustarse exclusivamente a un formato de codificación del color. Los escáneres, las cámaras fotográficas convencionales y digitales y las pantallas de tipo CRT o LCD son dispositivos aditivos, es decir, codifican en formato RGB. Cualquier tipo de imprenta o impresora codifica el color en formato CMY o CMYK, donde se incorpora la codificación en blanco/negro para optimizar el proceso de reproducción original en CMY (cap. 6).

Ahora bien, como los escáneres o las cámaras codifican en RGB al igual que las pantallas de visualización, y del mismo modo entre impresoras con el formato CMYK, no significa que el problema de incompatibilidad de espacios o lenguajes de color se haya solucionado ya, más bien empieza a complicarse. En primer lugar, ninguno de estos dispositivos puede diseñarse tecnológicamente de forma que sus primarios RGB o CYMK de reproducción sean los descritos como ideales, y ya se comprobará las consecuencias de esto en capítulos posteriores, cuando se analice más extensamente la tecnología del color de estos dispositivos.

En segundo lugar, ninguno de estos dispositivos comparte la misma terna de primarios de reproducción, incluso entre dispositivos del mismo tipo, ya que cada fabricante utiliza productos base o medios tecnológicos distintos que pueden diferenciar bastante los resultados de reproducción del color entre escáneres, cámaras, pantallas de visualización o impresoras. Las consecuencias de esto son graves. Ya que resulta más eficaz codificar digitalmente la información de color de forma relativa, valores en cada canal de color entre 0 y 1, aunque los 3 ó 4 valores de escalado absoluto se pueden transferir separadamente, esto no significa que la coincidencia de espacios RGB o CMYK en formato relativo entre dispositivos del mismo tipo sea perfecta, más bien en la mayoría de los casos es bastante diferente. Para comprender mejor estas aseveraciones, analicemos las formas de la figura 2.3, donde se representan de forma tridimensional cómo se distribuyen los colores en los espacios de representación o lenguajes básicos del color RGB, CMYK y HLS, como primera selección de espacio perceptual. En el espacio RGB, las coordenadas (1,0,0), (0,1,0) y (0,0,1) marcan respectivamente la posición de los primarios RGB (y de forma análoga para los primarios CMY en la figura inferior), y las coordenadas (0,0,0) y (1,1,1) para los colores negro (K) y blanco (W), que resultan invertirse de posición en el espacio CMY. Pero, claro está, aunque estas representaciones 3-D sean muy ilustrativas porque todos los lenguajes de color de los dispositivos de control del color se codificarán de la misma forma relativa, la información absoluta puede ser muy diferente. Así, los primarios rojos (1,0,0) de un escáner o un monitor CRT, o entre dos monitores CRT, pueden ser espectral y colorimétricamente diferentes; el blanco (1,1,1) de una pantalla LCD y el blanco-papel (1,1,1) que considera una impresora convencional tampoco son absolutamente iguales, hablando en términos espectrales y colorimétricos; ni siquiera son iguales en sentido absoluto la definición y codificación del negro (0,0,0) entre dispositivos del mismo tipo o cruzados (la pantalla apagada para un monitor RGB y la tinta negra para una impresora CMYK, por ejemplo). Por lo tanto, no significa lo mismo RGB o CMYK entre escáneres o impresoras de chorro de tinta de fabricantes distintos: cada espacio RGB (o CMYK) de cada escáner (o impresora) debe analizarse espectral y colorimétricamente, para derivar las causas de las semejanzas y diferencias en la codificación y representación del color entre estos dispositivos cuando son fabricados de forma distinta. No olvidemos, por tanto, que el impacto sociotecnológico y cultural de la multimedia es que cada persona, más o menos experta en la comprensión y manejo del color, tiene libertad para configurar su propio equipo multimedia: su escáner, su pantalla de visualización, su computadora y su impresora. Y que el ensamblaje de dispositivos tan dispares y de fabricantes diferentes debería proporcionar una gran compatibilidad o coordinación en el uso y manipulación del color en las imágenes insertadas en los documentos.


Fig. 2.3 Representación tridimensional de los espacios básicos de representación del color dependientes de un dispositivo aditivo (RGB) o sustractivo (CMY). Se representa también de forma tridimensional el espacio HLS como primera elección sencilla de representar de forma perceptual los colores codificados de forma local por un dispositivo multimedia.

En tercer lugar, un problema derivado de lo anterior es el problema de la interconexión de dispositivos o la comunicación de lenguajes o espacios de color (fig. 2.4). Supongamos que en un entorno ofimático cualquiera, ya sea doméstico o profesional, se dispone de varios dispositivos de entrada o de captura de imágenes y otros tantos de dispositivos de salida (pantallas de visualización e impresoras), todos ellos conectados entre sí en un entorno de red local, por ejemplo. Entonces, lo que no parece lógico es establecer una conexión uno a uno entre pares de dispositivos entrada-salida, crear tantos diccionarios de lenguajes de color como pares distintos de dispositivos entrada-salida (m × n diccionario). El coste computacional y los problemas de compatibilidad serían evidentemente enormes. La parte superior de la figura 2.4 se correspondería con el concepto de «espacio dependiente del dispositivo». Por tanto, parece más lógico establecer algún tipo de espacio de representación del color que actúe como nexo o enlace común entre todos los dispositivos de entrada y de salida (m + n diccionarios), tal como se muestra en la parte inferior de la figura. La pregunta, por tanto, es: ¿cuál podría ser este lenguaje común de color?


Fig. 2.4 Caracterización de dispositivos de control del color de una imagen según el estilo de codificación del color dependiente del dispositivo (parte superior) o independiente del dispositivo (parte inferior).

Este último problema se puede plantear de forma más realista mediante el listado siguiente sobre espacios de representación del color más comunes usados en tecnología del color (tabla 2.1). Si bien los espacios básicos de representación son RGB, CMYK y HLS, ya parece evidente según la figura 2.3 que no va a ser fácil establecer el diccionario o la transformación de color entre los espacios RGB y CMYK, ni siquiera la transformación RGB ↔ HLS resulta sencilla porque es fraccionaria o por partes (Kang 1997: 7). Si consideramos los espacios colorimétricos de la CIE, tanto los no perceptualmente uniformes como los que sí lo son, el abanico de posibilidades de seleccionar se amplía bastante. Si descartamos las transformaciones de color a los atlas de color Munsell y NCS, las transformaciones entre los espacios CIE están bien definidas, pero ¿cuál elegir? Por último, si consideramos los espacios dependientes de los dispositivos, todo se complica demasiado, pero el razonamiento siguiente es bastante explícito: no podemos seleccionar como lenguaje común de color ningún espacio de color dependiente del dispositivo.

TABLA 2.1

Listado de los espacios de representación del color más comunes usados en tecnología del color


Con este primer análisis, Xu y Holub (1992) estudiaron las propiedades deseables en un espacio de color estándar común para la tecnología del color, las cuales listamos a continuación:

1. Tener escalas numéricas aproximadamente independientes y perceptualmente uniformes para las dimensiones perceptuales del color: claridad, tono y croma. En especial, debería separar la información de la escala de grises (claridad) de una imagen de la de cromaticidad (tono + croma).

2. Incorporar un modelo de adaptación cromática (o equivalencia del punto blanco/negro) para que los blancos de medios diferentes fueran independientes del punto neutro en la representación de la imagen. El paso de un blanco a otro debe tener en cuenta las transformaciones de color dentro y fuera del espacio de color estándar.

3. Ser independiente del dispositivo/periférico, con valores que fueran medidos y relacionados con respecto al observador estándar.

4. Ser posible efectuar las transformaciones directas o inversas a este espacio de color mediante cálculos simples sobre un hardware barato. Como consecuencia de este requisito, existe la necesidad de registrar de forma exacta los valores cromáticos dentro y fuera del dispositivo.

5. Utilizar la digitalización por bits de forma eficiente, con tasas competitivas de compresión de la imagen.

6. Usar de forma eficiente un esquema regular de cuantización.

7. Incorporar el concepto inteligible y aceptado de un error tipo diferencia de color.

8. Facilitar la mezcla aditiva de colores.

Así, se efectuó un test comparativo entre la mayoría de los espacios de color indicados en la tabla 2.1 con la conclusión de que los espacios CIE-L*a*b* y CIE-L*u*v* son los más favorables para la tecnología del color (tabla 2.2). Sin embargo, estos espacios de representación del color dependen del espacio intermedio CIE-XYZ, por lo que, en esencia, el espacio de color estándar como lenguaje común de color es el CIE-XYZ más una transformación de adaptación cromática bien establecida.

No obstante, y como preámbulo a un apartado posterior, dado que la información en color para una imagen cualquiera no se codifica con valores triestímulo sino con valores digitales o niveles de gris, se está recomendando, desde los organismos internacionales de estandarización (de los que hablaremos más adelante) dos espacios de representación del color, sRGB y sYCC (IEC 1999), como estándares de codificación, conexión, compresión y transmisión de imágenes digitales. Esto no significa que el tema vuelva a la torre de Babel inicial, al contrario: debido a que los espacios sRGB y sYCC poseen unas transformaciones de color bien definidas con el espacio CIE-XYZ, se siguen corroborando las conclusiones anteriores de Xu y Holub.

TABLA 2.2

Comparación entre espacios de representación del color


2.2 Aspectos de la reproducción cruzada del color

El problema principal del procesado de la información electrónica de una imagen es el control de la apariencia del color de las imágenes de un documento cuando se ha de transferir a dispositivos/periféricos diferentes y pasar por varias transformaciones de color. En lo referente al aspecto del color en una imagen, el problema se traduce en el control de la igualación de la imagen reproducida o copia vs. imagen original, proceso que denominaremos a partir de ahora reproducción del color, la cual, como ya se va advirtiendo desde los apartados anteriores, es en muchos momentos un problema de reproducción entre dispositivos aditivos y sustractivos, entre escáneres, cámaras, pantallas de visualización e impresoras, de ahí que sea conveniente remarcar estos procesos como reproducciones cruzadas del color. Por tanto, los problemas de la reproducción cruzada del color son:

1. La codificación del color en un espacio de representación dependiente del dispositivo/periférico de control de la imagen (Device-Dependent Color Spaces), como por ejemplo la codificación RGB de monitores CRT o la codificación de tintas CMYK de las impresoras. Aspecto éste que ya ha sido abordado en el apartado anterior.

2. La transformación de una codificación cromática dependiente de un dispositivo a otra codificación de color dependiente de un dispositivo diferente, por diseño o por la naturaleza propia de soporte del color: ¿cómo pasar de valores RGB a valores CMYK, de monitor a impresora? Este concepto se definirá como transformación del color, y del cual tendremos la oportunidad de analizar un ejemplo numérico en un apartado posterior, así como estudiar los aspectos propios de este problema en escáneres y cámaras, pantallas de visualización e impresoras, en capítulos posteriores.

3. La equivalencia del punto blanco/negro en una transformación de color. Los colores blanco y negro delimitan el rango dinámico de intensidades o contrastes reproducibles (balance de grises): el blanco en pantalla de un monitor CRT no se caracteriza colorimétricamente igual que el blanco del papel para fotocopiadora.

4. La gama de colores reproducibles (gamut mapping), puesto que diferirán en tamaño y en características al aplicar una transformación de color entre dispositivos diferentes: colores que son reproducibles en un dispositivo pueden no serlo en otro distinto y viceversa. Este aspecto se analizará a continuación.

5. La diferencia de medios o sistemas de soporte/presentación/control de la imagen, porque el fundamento teórico de reproducción del color puede ser muy diferente: un televisor es un sistema aditivo de reproducción del color, mientras que una cámara fotográfica convencional es un sistema sustractivo de reproducción del color en modo print y transparencia o diapositiva. La consideración del medio influye muchísimo en el enfoque con que se ha de tratar la equivalencia blanco/negro y la gama de colores reproducibles para aplicar satisfactoriamente la transformación de color (tabla 2.3).

6. Las condiciones de visualización con que se efectúe, directa o indirectamente, la comparación de la reproducción del color entre copia y original, o sea, el control de calidad del color. En este aspecto es donde interviene de manera especial y fundamental el observador o el sistema visual humano (SVH), con todos sus aspectos de percepción visual, y las condiciones de iluminación, que incluyen la geometría fuente luminosa/observador y las características espectrofotométricas de la fuente luminosa.

7. El juicio subjetivo de la comparación visual entre la referencia y la muestra, conocido como apariencia del color, que va ligado a las condiciones del entorno y a la diferencia de medios. Este aspecto pone de manifiesto que, aunque encontremos una descripción cuantitativa o psicofísica del color (colorimetría), ésta nunca ofrecerá una equivalencia directa con la apariencia del color.

TABLA 2.3

Características de medios diferentes de reproducción del color


8. La variabilidad temporal de funcionamiento total y estructural de los dispositivos/periféricos del sistema de tratamiento en color de la imagen. Este aspecto obliga a buscar un procedimiento general de control con subprocedimientos flexibles y eficientes ante inestabilidades. Así, se identificará la caracterización como el procedimiento general y como calibración a los subprocedimientos a efectuar ante posibles alteraciones en el control del color.

En realidad, por tanto, los capítulos siguientes sobre escáneres y cámaras (cap. 3), pantallas de visualización como los monitores CRT (cap. 5) e impresoras (cap. 6) plantearán, analizarán y resolverán los problemas específicos de estos dispositivos, como la caracterización colorimétrica y la transformación de color al espacio CIE-XYZ.

2.2.1 La gama de colores reproducibles

La gama de colores reproducibles (gamut mapping) es uno de los componentes de cualquier sistema de reproducción del color; su técnica o tarea consiste en asignar colores en un dispositivo de salida a partir de los colores del dispositivo de entrada. En este sentido, la gama de reproducción está siempre presente en todos los sistemas de reproducción del color, incluso aunque esté en la mayo-ría de los casos ejecutada de forma implícita. Sin embargo, puede verse también como una extensión de los modelos de apariencia del color, como el propósito de igualar la apariencia global de las imágenes (colores relacionados) en vez de la apariencia de los colores aislados. Este sería el segundo enfoque y el más apropiado para todas las aplicaciones de la tecnología del color, como en las artes gráficas.

Para comprender los algoritmos principales de la técnica gamut mapping, los cuales se han ido desarrollando a lo largo de los últimos diez años en tres ciclos generacionales (Morovic, Luo 1999; Morovic, Luo 2001), es necesario tener una comprensión clara de cuál es la función de esta técnica, en qué etapa del proceso de reproducción del color ha de ejecutarse y cuáles son sus componentes principales.

2.2.1.1 Fundamentos sobre la gama de colores reproducibles

La gama de colores reproducibles sobre cualquier dispositivo multimedia se puede representar como un sólido en un espacio de color, un espacio definido por CIE o definido por un modelo de apariencia del color. La función de la técnica de la gama de reproducción es, por tanto, describir una forma de representar colores a partir de la gama original de colores reproducidos dentro de la gama final de colores reproducibles. El objetivo de esta representación o proyección es asegurar que la apariencia del color de una reproducción sea lo más cercana posible al original. Es importante volver a recordar que lo que se necesita es mantener la similitud en la apariencia global en vez de la apariencia de los colores individuales, que es imposible en la mayoría de los casos. Para ilustrar la importancia del concepto de la gama de reproducción, la figura 2.5 (véase apéndice de color) muestra aproximadamente en el espacio CIE-L*a*b* las gamas de reproducción de un monitor CRT, como dispositivo aditivo RGB, y una impresora de chorro de tinta, como dispositivo sustractivo CMYK. Si efectuáramos cortes transversales del tipo L*-Cab* con tono hab* constante, o del tipo a*-b* con claridad L* constante, se podría observar claramente que la pérdida de gama de colores azulados, violáceos y purpurados es grande en la impresora, mientras que ésta misma nos permite obtener una gama más amplia de colores amarillentos que el monitor CRT. Ahora bien, como cada imagen visualizada sobre el monitor –y con pretensión de transferirse sobre la impresora– presenta su propia apariencia del color bajo su subgama de reproducción, el objetivo de las técnicas de gamut mapping es transformar esta subgama de reproducción en RGB en otra subgama en CMYK, de forma que la apariencia del color de la imagen RGB y CMYK sea aproximadamente constante. Por tanto, los colores aislados de las gamas completas de reproducción (fig. 2.5, véase apéndice de color) del monitor RGB y de la impresora CMYK deben seleccionarse acertadamente para conseguir este fin, con la dificultad que supone, por ejemplo, trazar una proyección entre un color azul saturado del monitor –que no tiene correspondencia aislada con algún color azul de la impresora– con otro color azul menos saturado de la impresora, para conseguir que la apariencia azul de la imagen en cuestión sea constante.

La técnica de la gama de reproducción es solamente un paso más en un proceso de reproducción del color. Incluso aquellas técnicas de reproducción que no tienen explícitamente una etapa de proyección de la gama de colores la incluyen. Esta proyección produce implícitamente una igualación de los colores en términos cuantitativos –por ejemplo con valores triestímulo CIE-XYZ o coordenadas CIE-L*a*b*– entre el original y la copia, donde sea también físicamente posible el recorte (clipping) de los colores sobre el contorno de la gama de reproducción de los colores originales que no están dentro de ella. Así pues, los resultados de la proyección de la gama de colores reproducibles dependen también de las otras etapas del proceso de reproducción y de la elección del entorno (espacio o modelo de apariencia del color) donde la técnica o algoritmo va a ejecutarse.

Dado que la función de la gama de colores reproducibles es conseguir una igualación de apariencia, se necesita proyectar los atributos perceptuales: claridad, croma y tono. Para que esto sea posible, es necesario tener información cuantitativa acerca de las gamas de colores originales y finales. Aunque esta igualación es preferible que se realice con atributos perceptuales, la mayoría de los algoritmos propuestos (de los que presentaremos más adelante alguno de ellos) usan espacios uniformes, como CIE-L*a*b* o CIE-L*u*v*, y por tanto, las proyecciones están en las dimensiones de éstos.

Como elección para proyectar las gamas de colores, se opta por dos concepciones. La primera, que es posible proyectar la gama del dispositivo de entrada u original y la gama del dispositivo de salida o de reproducción, por lo que sería independiente del contenido o tipo de imagen (image independent mapping). Este es el enfoque más común adoptado por los fabricantes de los dispositivos multimedia, y que también incorporan de peor o mejor forma las aplicaciones ofimáticas. La segunda es que también se puede proyectar entre la gama de colores de la imagen original y la de la reproducción, por lo que claramente depende del contenido y tipo de imagen (image dependent mapping). Tiene la ventaja de que la proyección o registro distorsiona lo menos posible en el entorno global de la imagen. Si se considera toda la gama de colores del dispositivo de entrada, algunos colores se modificarán excesivamente para acomodar colores que incluso no están presentes en la imagen considerada.

2.2.1.2 Proyección sobre el tono

Puesto que el tono es el atributo perceptual que nos permite discriminar cromáticamente con la mayor exactitud y el atributo de mejor acuerdo entre individuos, la mayoría de los autores proponen mantenerlo inalterado. En este caso, la única dificultad es que, aunque todos los algoritmos excepto uno no cambian el tono, mantienen solamente el ángulo tono hab* en CIE-L*a*b*, el cual es una representación imperfecta del tono percibido. Esto puede producir cambios en el tono percibido a pesar de que los colores se están moviendo en planos de ángulo tono constante.

2.2.1.3 Proyección sobre la claridad

El algoritmo más sencillo es el del recorte o clipping (fig. 2.6), donde se puede observar claramente cómo éste se ejecuta: si la línea discontinua marca la relación 1:1 entre las gamas de claridad L* en la entrada y la salida del proceso de reproducción, todos los colores muy oscuros (con L*ENTRADA < 20, por ejemplo) van a configurarse con un mismo valor numérico (con L*SALIDA = 20, por ejemplo), mientras que los colores más claros (con L*ENTRADA > 85, por ejemplo) también se van a codificar en la reproducción final con el mismo valor (con L*SALIDA = 82, por ejemplo). Con programas de diseño y retoque gráfico de imágenes es muy fácil hacer este ejemplo y analizar las consecuencias perceptuales sobre cualquier tipo de imagen compleja, ya sea artificial o natural.


Fig. 2.6 Ejemplos gráficos más usados en las técnicas de proyección de las gamas de claridad en un proceso de reproducción del color entre un dispositivo de entrada (línea discontinua) y uno de salida (línea continua).

Sin embargo, la mayoría de los algoritmos propuestos usan la compresión lineal de la claridad (fig. 2.6), el cual tiene una ecuación bien característica:


Como se puede analizar, esta ecuación no es más que una interpolación lineal con el detalle importante que la variable s, como pendiente de la recta, es menor que 1, de ahí que se trate de un efecto de compresión, porque generalmente las capacidades de reproducción del color del dispositivo de salida son más reducidas que las del de entrada. Sin embargo, el efecto contrario (que s sea mayor que 1) no comprime sino que amplia, readapta el rango de claridad más pequeño a un rango más grande. Tal técnica, también muy utilizada en el tratamiento digital de la imagen, recibe el nombre genérico de ecualización de histograma.

De forma opcional, la claridad puede comprimirse de modo no lineal –donde los colores con claridad media se retienen y los colores claros y oscuros se comprimen o ecualizan–, o bien mediante una función de recorte suave (soft-clipping), tal como aparece en la representación derecha de la figura 2.6. En parte, esto es similar a las curvas de balance de grises (tone reproduction curves) usadas tradicionalmente en artes gráficas, y es claramente dependiente del tipo de imagen.

2.2.1.4 Proyección sobre el croma

Se ejecuta generalmente después del algoritmo de proyección de la gama de claridad. En la mayoría de los estudios acerca de la proyección de la claridad, la técnica posterior de proyección del croma es simplemente una compresión lineal en planos de tono constante y a lo largo de líneas de claridad constante (fig. 2.7). Es decir, establecidos los valores constantes de claridad y tono, se obtienen los valores máximo y mínimo del rango concreto de croma en los dis-positivos de entrada y salida, máx(C*E) y mín(C*E), máx(C*S) y mín(C*S) para aplicar entonces con total validez una ecuación análoga a la anterior. La compresión puede determinarse de forma independiente en cada línea o de manera uniforme en todo el espacio de representación del color. Si se toma el último enfoque, una pendiente s entre 1 y la del algoritmo de compresión de la claridad es la mejor opción para obtener los resultados perceptuales más aceptables.


Fig. 2.7 Ejemplo gráfico más usado en las técnicas de proyección de las gamas de croma en un proceso de reproducción del color entre un dispositivo de entrada (línea discontinua) y uno de salida (línea continua).

2.2.1.5 Proyección combinada de claridad y croma

Para proporcionar transiciones más suaves entre regiones adyacentes en un espacio de color, las cuales no están aseguradas por algoritmos separados de proyección de claridad y croma, se ha desarrollado un amplio número de algoritmos de proyección combinada de claridad y croma, siempre bajo secciones o perfiles de tono constante.

De entre todos estos algoritmos, y tras el exhaustivo estudio de Morovic (1999), los más destacados y representativos de las tres generaciones desarrolladas hasta ahora son la compresión lineal paso a paso y la compresión lineal o esférica generalizada (fig. 2.8). La aplicación de una técnica u otra depende en gran medida de las formas gráficas de intersección de las gamas de reproducción en los planos claridad-croma en diferentes regiones tonales. La compresión lineal paso a paso proporciona resultados satisfactorios cuando la gama de reproducción de salida no está englobada en la de la entrada. Este algoritmo comprime linealmente primero los rangos de croma, dependiendo de los vértices de un valor perceptual de tono, y entonces proyecta los rangos de claridad a lo largo de líneas de croma constante. La compresión del croma se lleva a cabo usando la ecuación siguiente:


y la claridad se proyecta como



Fig. 2.8 Ejemplos gráficos más usados en las técnicas de proyección combinada de las gamas de reproducción de claridad y de croma entre un dispositivo de entrada (línea discontinua) y uno de salida (línea continua).

La compresión esférica generalizada se aplica cuando la gama de reproducción de salida está dentro de la de entrada, cuando la intersección entre los dos conjuntos-gamas de reproducción es la del dispositivo de salida. Se ejecuta también una compresión lineal que se aplica del modo siguiente. Se marcan los vértices de croma máximo de las dos gamas de reproducción, es decir, máx(C*E) y máx(C*S), entonces se traza una línea entre los dos puntos para encontrar el punto a, como corte en el eje de la escala de claridad. El punto a representa el centro de gravedad sobre el que se ejecutarán las compresiones lineales de clari-dad y croma simultáneamente. Si un punto-color en el dispositivo de entrada lo representamos como x ≡ (C*e, L*e) y a los extremos de las gamas siguiendo la línea a-x como los puntos b ≡ (C*b, L*b), en el dispositivo de salida, y c ≡ (C*c, L*c), en el de entrada, entonces la compresión lineal a lo largo de la línea a-b-c se ejecuta así:


Si bien la mayoría de los algoritmos de proyección de gamas de reproducción provienen del mundo de las artes gráficas, al desarrollarse para controlar el color reproducido entre los monitores CRT y las impresoras o la imprenta, podemos extraer unas características algorítmicas comunes a aplicar sobre otras parejas de dispositivos multimedia de reproducción del color:

1. Hacer cambios sobre el menor número posible de colores y que sean también los más pequeños posibles.

2. Usar un entorno perceptualmente uniforme, para trabajar por ejemplo con planos de tono perceptual constante.

3. Mantener el tono percibido en vez del ángulo-tono.

4. Comprimir la claridad de forma lineal.

5. Comprimir el croma de forma lineal.

6. Aplicar compresiones distintas sobre regiones diferentes del espacio de representación del color.

7. Usar la proyección combinada de claridad y croma.

8. Comprimir la gama de colores de la imagen, y no la del dispositivo multimedia.

9. Mantener el croma tanto como sea posible sin sacrificar una cantidad significativa de detalle o resolución espacial. Los mejores resultados psicofísicos se obtienen cuando se considera un compromiso algorítmico entre la claridad y el croma.

2.3 Estándares internacionales de la tecnología del color

Estamos viendo a lo largo de este capítulo que la problemática de la tecnología del color, de los sistemas de gestión del color, es el espacio de color dependiente del dispositivo multimedia y los problemas derivados, por tanto, de la reproducción cruzada, como las técnicas algorítmicas de proyección de las gamas de reproducción. Si cada fabricante de cualquier tipo de dispositivo multimedia –escáner, cámara digital, monitor CRT, pantalla LCD, impresora de chorro de tinta, impresora láser a color, etc.– y cada fabricante de hardware y software –sistema operativo, aplicación informática de diseño gráfico y tratamiento digital de imágenes, etc.– usara su propio espacio de representación del color, la operabilidad funcional de controlar el color sería muy reducida. Para evitar cualquier imprevisto de incompatibilidad ante la realidad del sistema abierto de los equipos multimedia profesionales y caseros, parece imprescindible cierta coordinación técnica entre al menos todos los principales fabricantes anteriores. De aquí surgió en 1993 el denominado Consorcio Internacional del Color (International Color Consortium, ICC), del que hablaremos después más extensamente.

Por otro lado, estos problemas de coordinación técnica no son nada nuevos, si consideramos otros campos tecnológicos, para las principales organizaciones internacionales sobre estandarización: ISO (International Organization for Standarization), IEC (International Electrotechnical Commission) e ITU (International Telecommunication Union). ISO es responsable de la estandarización de todos los campos técnicos y tecnológicos, excepto la ingeniería eléctrica y electrónica, la cual es competencia de IEC. Sin embargo, es importante remarcar que los estándares regulados internacionalmente son responsabilidad de ITU, la cual se organiza y se gobierna bajo los auspicios de la Naciones Unidas, y sus estándares son administrados por los gobiernos y tratados gubernamentales, a diferencia de las empresas de los sectores técnicos/tecnológicos, como lo hacen los estándares de ISO e IEC. En particular, a partir de la sede central de ISO, se expanden y controlan las aplicaciones de los estándares mediante los organismos nacionales de estandarización: ANSI para Estados Unidos, DIN para Alemania, BSI para Reino Unido, UNE para España, etc.

El grupo consejero técnico de coordinación ISO/IEC denominado JTAG2 (ISO/IEC Joint Technical Advisory Group 2) es el responsable de proporcionar enlaces y coordinación entre aquellos comités internacionales de estandarización técnica sobre tecnología de la imagen (Imaging Science), en el que también se incluye la tecnología del color. La forma de actuar de este grupo coordinador durante la última década ha sido la de promover y coordinar reuniones de carácter técnico entre las diferentes organizaciones internacionales de estandarización, grupos de expertos y científicos de renombre en los campos de la visión y el color, como son los miembros de los comités técnicos de CIE (Commission Internationale de l’Éclairage), y representantes de las principales empresas dedicadas a este campo tecnológico. Los objetivos de estos encuentros técnicos que todavía perduran con cierta regularidad, aunque ya en algunos aspectos en estado de gran avance de coordinación, son:

1. Compartir información de contenido técnico y establecer proyectos que involucran la caracterización o definición del color de las imágenes.

2. Identificar áreas donde existan o se propongan enfoques que son divergentes o iniciar una discusión hacia la resolución.

3. Identificar áreas que requieran conocimientos o tecnologías nuevas, y recomendar las actividades necesarias de CIE, la industria y otros grupos de estandarización para conseguir soluciones.

Existen tres categorías de estandarización basadas en la estandarización colorimétrica básica (según CIE) y que, por tanto, delimitan las relaciones entre las organizaciones ISO, IEC, CIE e ICC (fig. 2.9). Son las siguientes:

1. Estandarización orientada hacia el control del color propio de los dispositivos.

2. Estandarización orientada hacia la caracterización del equipamiento, la cual será necesaria para la gestión del color de los sistemas multimedia.

3. Estandarización con el fin de proporcionar esquemas comunes para la gestión global del color.


Fig. 2.9 Esquema donde se muestran las interrelaciones administrativas y científicas entre las principales organizaciones internacionales de estandarización de la tecnología del color.

El comité técnico IEC/TC100 (Equipamiento y Sistemas en el Campo del Sonido, Vídeo e Ingeniería Visual) junto con el proyecto internacional PT 61966 (Medida y Gestión del Color en Equipos Multimedia, IEC 2001), es el coordinador de esta gran tarea de estandarización de las nuevas tecnologías multimedia. La caracterización y el control del color en los dispositivos multimedia –escáneres, cámaras, pantallas de visualización e impresoras– es tarea de algunos comités técnicos de ISO y subcomités de IEC. Por ejemplo, ISO/TC42 es el comité técnico sobre fotografía fotoquímica (clásica) y digital, mientras que ISO/TC130 controla la tecnología de las artes gráficas. Los informes técnicos más relevantes de ISO/TC42 son (ISO/TC42 2001, PIMA 2001):

ISO 3664: condiciones de visualización para papel fotográfico (print), transparencias y sustratos para fotografía y tecnología de artes gráficas;

ISO 12231: terminología para fotografía digital (escáneres y cámaras);

ISO 12232: velocidad de captura para fotografía digital;

ISO 12233: medidas de resolución para fotografía digital;

ISO 12234: formatos de imagen y tarjetas reemplazables de memoria para fotografía digital;

ISO 14524: métodos para medir funciones de conversión optoelectrónica en fotografía digital;

ISO 17321: caracterización del color de cámaras digitales;

ISO 15739: medidas sobre el ruido fotográfico (sensibilidad fotográfica);

ISO 15740: protocolo para transferencia de imágenes de las cámaras digitales.

Los informes técnicos más importantes de ISO/TC130 son (ISO/TC130 2001):

ISO 2846: configuración de tintas de impresión de colores y transparencias en tecnologías de artes dráficas;

ISO 12640: base de imágenes digitales (SCID, Standard Colour Image Data) en color para intercambio digital preimpreso en las tecnologías de artes gráficas;

ISO 12641: muestras coloreadas para la calibración de escáneres en el intercambio digital preimpreso en las tecnologías de artes gráficas;

ISO 12642: datos de entrada en formato CMYK para la caracterización de procesos de impresión con cuatro colores en las tecnologías de artes gráficas;

ISO 13655: medida espectral y cálculos colorimétricos para imágenes creadas con tecnologías de artes gráficas.

Todo este enorme trabajo de estandarización y, a veces, de nueva investigación es fruto de numerosos especialistas que, si bien algunos forman parte de la comunidad universitaria, otros son integrantes de grupos de investigación y desarrollo de empresas de gran renombre internacional, pero que en gran medida, la mayoría de todos ellos son también colaboradores de CIE, que es la organización científica base que coordina, publica y estandariza nuevos aspectos sobre iluminación, visión y color (CIE 2001), los campos científicos donde se encuentran las raíces de los problemas básicos de la tecnología del color.

Como complemento a la estandarización internacional de la tecnología del color, presentaremos a continuación de forma más extensa, tres aspectos o cuestiones de naturaleza común en los sistemas de gestión del color (fig. 2.1).

1. ¿Qué tipo de escena se debería usar para caracterizar los escáneres y las cámaras? Analizaremos el informe ISO 12641 (Muestras coloreadas para la calibración de escáneres en el intercambio digital preimpreso en las tecnologías de artes gráficas) así como, de forma adicional, la carta Gretag-Macbeth ColorChecker (fig. 2.11, véase apéndice de color).

2. Si ya sabemos que cada dispositivo de entrada, visualización o de salida en la cadena de reproducción de una imagen (figura 2.1) tiene su propio espacio de representación del color, RGB o CMYK, y que el espacio de color CIE-1931 XYZ es el espacio de color independiente o de nexo entre los espacios de color dependientes del dispositivo, ¿es posible, no obstante, definir un espacio estándar RGB común para la codificación digital y otro espacio estándar YCC para la transmisión digital de las imágenes? Si esto fuera posible, ¿existirían transformaciones de color bien definidas entre estos espacios de color y el CIE-1931 XYZ? Analizaremos este aspecto sobre la transformación del color mediante el estudio del informe técnico IEC 61966-2 (Gestión del Color: sRGB y sYCC) y su aplicación a los datos colorimétricos de la carta Gretag-Macbeth ColorChecker presentada anteriormente.

3. Aunque parece que todo el peso de la estandarización de la tecnología del color es soportado por organismos internacionales, también se comentó al principio de este apartado que las principales multinacionales del sector se habían agrupado bajo el nombre de ICC (International Color Consortium) para coordinar los problemas de compatibilidad en la gestión del color entre sus productos, ya fueran de tipo hardware (incluidas las películas fotográficas) o de tipo software. Por tanto, la pregunta lógica es: ¿cómo se integran sus propuestas técnicas sobre gestión del color con las recomendadas por los organismos internacionales de estandarización? Estudiaremos la estructura del perfil ICC o algoritmo de gestión del color entre los diferentes dispositivos multimedia así como el esquema del espacio de color de conexión (PCS), que no es más que una aplicación de los estándares internacionales de colorimetría.

2.3.1 Caracterización de dispositivos multimedia: cartas de calibración

El problema básico subyacente en el control del color en las tecnologías multimedia es cómo gestionar la variedad de espacios o sistemas de color depen-dientes de cada dispositivo. La solución general pasa inevitablemente por conseguir la función f (ND, p) de caracterización colorimétrica CIE TXYZ = f (ND, p) de cada tipo de dispositivo, siendo ND la variable vectorial característica ligada al proceso directo de generación o control del color, y p, el conjunto de parámetros de funcionamiento del dispositivo que puede alterar en un segundo plano el tipo de reproducción de color conseguida. Así, por ejemplo, en el caso de los dispositivos de captura, ND representaría los niveles digitales RGB de un escáner/cámara, y el conjunto p incluiría el método de separación espectral de los canales de color, el tipo de sensor optoelectrónico, etc. En el caso de los dispositivos de visualización del tipo CRT (Cathod Ray Tube), ND representaría las señales eléctricas de excitación de bombardeo de electrones sobre los fósforos RGB de la pantalla, mientras que el conjunto p incluiría la variedad fisicoquímica de los fósforos y los controles externos de brillo y contraste de la pantalla. Del mismo modo, en el caso de una impresora de chorro de tinta, ND representaría los niveles proporcionales de las tintas cian (C), magenta (M), amarilla (Y) y negra (K) de las tramas de puntos coloreados CMYK, mientras que el conjunto p incluiría el tipo de papel o sustrato, la composición de las tintas, la interacción fisicoquímica entre las tintas y el papel, etc.

Aunque parezca obvio ahora la necesidad de caracterizar colorimétricamente según TXYZ = f (ND, p) cada uno de estos tipos de dispositivos multimedia, no existe un algoritmo general válido para cualquier grupo (Vhrel, Trussell 1999). Lo ideal sería que la función f de caracterización fuera analítica o monótona (monovaluada), o sea, paramétrica según ND y p, e invertible (que existiera analíticamente la función g = f -1), de forma que igual que podríamos predecir el color resultante TXYZ a partir de ND y p dados, pudiéramos averiguar qué conjunto ND y p está biunívocamente relacionado con un color TXYZ determinado. Para ello, habría que efectuar el número suficiente de medidas experimentales para ajustar matemáticamente los resultados colorimétricos TXYZ al conjunto {ND, p} mediante un método de minimización de una función determinada de desviación o error. Generalmente, este conjunto de medidas recibe el nombre de conjuntoentrenamiento, mientras que suele ser otro grupo de colores el que se utiliza para probar la eficacia del método de ajuste, de ahí que se conozca convencionalmente como el conjunto-test. Habitualmente, el conjunto-entrenamiento es espectro-rradiométrico, y el conjunto-test no necesita serlo, puesto que los modelos colorimétricos de caracterización se ajustan a la predicción de los valores triestímulo TXYZ y no a la distribución espectral de potencia radiante subyacente en el color psicofísico. Esto es lo que ocurre genéricamente, por ejemplo, en la caracterización colorimétrica de monitores CRT (cap. 5) e impresoras de chorro de tinta (cap. 6): un modelo fisicomatemático más o menos sencillo, basado en los principios físicos y tecnológicos del dispositivo (es decir, utilizando o controlando al menos parcialmente el conjunto p), permite simular con bastante éxito el control y manipulación del color de las imágenes en sus respectivos formatos. Ahora bien, la situación anterior está bastante idealizada y nunca se aplica, por ejemplo, para los dispositivos de captura, ya sean escáneres o cámaras. Por tanto, para esta clase de dispositivos multimedia de color, debe recurrirse a algoritmos de caracterización colorimétrica estrictamente empíricos (ad hoc), o sea, completamente matemáticos como, por ejemplo, la generación de tablas de interpolación polinómica (las LUT, Look-Up Tables), sin tener en cuenta un modelo fisicotecnológico sobre el funcionamiento del dispositivo. En estos casos, el conjunto p incluye muy pocos parámetros, lo cual limita exclusivamente la eficacia del modelo colorimétrico al conjunto de entrenamiento, siendo casi siempre un conjunto de colores en formato CIE-XYZ, nunca con información espectrorradiométrica.

Los escáneres y las cámaras no ven de la misma forma como lo hace nuestro sistema visual (cap. 3). Estos dispositivos se diseñan para optimizar la señal generada cuando se captan materiales convencionales. Las películas fotográficas y los productos fotográficos de reflexión (papel fotográfico o modo print) usan selectivamente varias combinaciones de conjuntos de colorantes para producir respuestas visuales metámeras que simulan la apariencia del color de los objetos de las escenas naturales. Ya que las sensibilidades de los colorantes y los escáneres varían de producto a producto, existe una gran variabilidad en la respuesta de un escáner a colores metámeros producidos por varios materiales. Esto significa que cada combinación escáner/película debe caracterizarse y calibrarse para trabajar con fiabilidad y efectividad. Dos estándares tipo ANSI (American National Standards Institute), de la organización norteamericana de estandarización, IT8.7/ 1-1993 (en formato transparencia) e IT8.7/2-1993 (en formato papel), fueron los adoptados como normativa internacional ISO 12641 para definir las características de las cartas de calibración para esta aplicación (Rinehart 1989).

Un hecho importante confirmado durante el desarrollo del estándar es que, en el caso de las películas (modo transparencia), todas las de un fabricante dado usan el mismo grupo de colorantes. Por lo tanto, sólo se requiere físicamente una única carta para cada tipo principal de película fotográfica (por ejemplo, Kodak Ektachrome, Kodachrome, Fujichrome, Agfachrome). Lo mismo ocurre para la caracterización de la carta en formato papel. Esto permite que la fabricación y la distribución de estas cartas de calibración sea un proceso gestionable por los comerciantes y los usuarios.

Este estándar proporciona una definición colorimétrica de las zonas coloreadas que se incluyen, y define los tamaños específicos y las posiciones para los 252 colores individuales (fig. 2.10, véase apéndice de color). Es importante remarcar que estas cartas han sido especificadas de forma que algunos colores tiene valores colorimétricos fijos independientemente del producto usado (tablas 2.4 y 2.5), mientras que otros colores tienen valores que se definen según las características del producto específico usado para crear la carta. La normativa requiere también que los datos colorimétricos sean proporcionados en todas las cartas fabricadas, o bien de forma individual, o sobre una tolerancia colorimétrica en los lotes de fabricación que no supere nunca la diferencia individual de color ΔE = 10.

Los colores de una carta IT8 (fig. 2.10) se distribuyen de la manera siguiente:

1. Un conjunto de 108 colores con valores colorimétricos CIE-L*a*b* fijos que suelen pertenecer a la mayoría de las gamas de reproducción de los dispositivos multimedia (tablas 2.4 y 2.5). Estos colores se distribuyen en las columnas 1-3, 5-7 y 9-11, de forma que en las columnas 1-3 la claridad L* fluctúa entre {10,15,20,25,30}, en las columnas 5-7 {30,35,40,45,50,55,60} y en las columnas 9-11 {55,60,65,70,75,80}. A medida que bajamos en posición a lo largo de una columna, el tono varía desde el rojo, pasando por el naranja, amarillo, verde, cian, azul, violeta hasta llegar al magenta. A medida que nos desplazamos lateralmente por una fila de los tres tríos de columnas, el croma aumenta aparentemente de forma proporcional de izquierda a derecha en los tres grupos de columnas con claridad L* ascendente.

TABLA 2.4

Valores cromáticos fijos CIE-L*a*b* de las áreas-color siguientes de la carta IT8.7/1 (formato transparencia) de la norma ISO 12641


TABLA 2.5

Valores cromáticos fijos CIE-L*a*b* en las áreas-color siguientes de la carta IT8.7/2 (formato papel) de la norma ISO 12641


2. Una escala neutra o acromática de 24 grises, desde la densidad mínima Dmín (blanco) hasta la densidad máxima Dmáx (negro), con pasos visualmente equidistantes que, más o menos, se corresponden con pasos equidistantes de densidad óptica D.

3. El conjunto específico de colores de la carta, de los cuales muchos de ellos limitan la gama de reproducción de los colorantes usados en cada carta. Las columnas no especificadas 4, 8 y 12 sería un primer grupo de colores con croma bastante alto pero distribuidos sobre grupos de clari-dad ascendente y tono variable. Las escalas C(12), M(13), Y(14), R(16), G(17) y B(18) se diseñan según el siguiente criterio: para cada color puro de la escala, la cantidad de colorante presente en cada posición será la misma cantidad que la del colorante negro de la columna K(15). Estas escalas, incluyendo la escala neutra anterior, son las escalas más importantes usadas por los operadores de escáneres para efectuar el balance de gris y los ajustes de color para compensar las diferencias espectrales de los colorantes, entre el conjunto de los colorantes de la imagen original y el conjunto diferente de colorantes para la reproducción final en papel impreso.

4. Cada carta contiene también imágenes adicionales o nuevos colores específicos del fabricante o vendedor, los cuales se sitúan a la derecha de la carta IT8.

2.3.1.1 ¿Cómo se usa la carta IT8?

Como primer paso en la caracterización de un escáner que se puede usar en varias aplicaciones informáticas, se escanea o se capta la carta IT8 (en fomato transparencia o papel) con el software propio del escáner. La imagen resultante aparecerá en la pantalla del monitor como una imagen RGB, pero tratándose, por supuesto, de una codificación RGB dependiente de este dispositivo.

Cualquier imagen RGB puede transformarse al espacio de representación CIE-L*a*b*, aspecto que no es nada sencillo de plantear ni resolver como veremos en el subapartado posterior y en el capítulo siguiente. Sin embargo, la mayoría de las aplicaciones informáticas sobre gestión del color logran usar algun procedimiento, más o menos acertado, de paso de RGB a CIELAB por lo que, en principio, todos los colores RGB de la carta escaneada ya estarían transformados a valores L*a*b*. Comparando entonces los valores L*a*b* originales proporcionados por el fabricante-vendedor y los valores L*a*b* reproducidos, el software puede calcular el error de color de entrada para cada muestra de la carta. El software usa entonces esta información para construir una tabla compensatoria de color. Esta tabla y su información complementaria puede grabarse como un fichero de caracterización o perfil del dispositivo (Adams II, Weisberg 1998; Autiokari 2001).

Una vez que el software de gestión del color conoce la ubicación del fichero sobre el perfil del dispositivo, éste puede compensar con bastante acierto los errores de reproducción del color de cualquier imagen escaneada. Esto suponiendo siempre que el software y el hardware del equipo multimedia están correctamente configurados y que ningún cambio se efectúa en el sistema. Si fuera el caso que se han efectuado algunas variaciones sobre el sistema, que parecen en principio insignificantes (iluminante de visualización, cambio de la fuente luminosa del escáner, etc.) pero que sí alteran la caracterización y el perfil del escáner, es necesario volver a calibrar el dispositivo reescanenando la carta IT8 y repetir todo el proceso en el software de gestión del color para crear un nuevo fichero-perfil del dispositivo. Lo mismo se haría con la carta IT8 7/3 de ISO 12642 para sistemas de impresión (Adams II, Weisberg 1998: 77-79).

Otra opción como carta de calibración de escáneres y cámaras para aplicaciones específicas de la tecnología del color es la carta ColorChecker de Gretag-Macbeth (fig. 2.11, véase apéndice de color). A diferencia de las cartas IT8, consta solamente de 24 colores, en los que se incluye un conjunto de primarios RGB y CMYK así como una escala acromática de 6 grises, desde el blanco hasta el negro. Sin embargo, el aspecto diferenciador que destaca sobre cualquier otra carta de calibración es que el resto de los 12 colores, los cuales se sitúan en la parte superior, son una muestra estadísticamente bien representativa de los colores de los objetos naturales o más usuales, como los colores seleccionados como estándares para la piel blanca caucasiana y la piel oscura o morena, los colores azul cielo o el verde follaje y otros más, tan característicos del entorno que nos rodea (McCamy, Marcus, Davidson 1976).

La carta ColorChecker suele suministrarse con los valores colorimétricos CIE-(x,y,Y) bajo iluminante C, con notación Munsell H V/C (tono claridad/ croma), con notación nominal (nombre a los colores) según ISCC (Inter-Society Color Council) y NBS (National Bureau of Standards) de Estados Unidos y con una descripción nominal, pero no estandarizada, de los colores asociados a objetos naturales. La particularidad de que esta carta de colores sea tan usada en la actualidad se debe a su acertada representatividad estadística de los objetos-color que contiene. Por ejemplo, la reproducción de la piel blanca caucasiana es siempre un gran reto de reproducción para los ingenieros de color en TV o para los profesionales en artes gráficas, de ahí que también en las cartas IT8, en la opción del fabricante-vendedor, se suelan incorporar colores con saturaciones medias y tonalidades cercanas a objetos-color tan usuales como la piel blanca caucasiana, el verde follaje o el azul cielo.

2.3.2 Los espacios de representación del color sRGB y sYCC

En abril de 1990 se obtuvo un acuerdo internacional unánime sobre un espacio no lineal RGB bien caracterizado para la producción e intercambio de programas de TV de alta definición (ITU-R BT.709). Especificaba la forma de codificar los valores triestímulo de una escena real sobre un espacio de color RGB de una pantalla de visualización de referencia suponiendo un entorno ambiental de iluminación baja. La especificación ITU-R original era bastante ambigua en la definición de las características de la pantalla de visualización de referencia. Para clarificar estas ambigüedades iniciales y ampliar el uso de este estándar al ámbito de los sistemas de gestión del color, IEC e ITU recomiendan el uso de dos espacios de representación del color denominados sRGB y sYCC (IEC 1999, ITU 1998, sRGB 2001), o espacios fundamentales RGB e YCC.

Este nuevo estándar se basa en unas condiciones de referencia bien detalladas para la pantalla de visualización (monitor CRT, LCD, etc.), el entorno de visualización (ISO 3664) y el observador patrón colorimétrico (CIE 1931 XYZ). Por ejemplo, la característica entrada-salida de la pantalla RGB vale 2.2 y el valor de brillo por defecto vale 0; entonces la relación entrada V’sRGB vs. salida fotométrica VsRGB es VsRGB = (V’sRGB + 0.0)2.2, pero la transformación de sRGB a XYZ sufre un aumento de contraste-gamma de valor 2.4/2.2 > 1, lo cual sirve para mantener el balance de grises (tone reproduction) de la imagen original debido al efecto reductor de la iluminación ambiental. También, por ejemplo, las cromaticidades CIE-(x,y) de los primarios RGB y del blanco W (D65) de la pantalla están bien detalladas: (xR, yR) = (0.6400, 0.3300), (xG, yG) = (0.3000, 0.6000), (xB, yB) = (0.1500, 0.0600) y (xW,yW) = (0.3127, 0.3290).

Ya que las transformaciones de color sRGB → XYZ, sRGB → sYCC, o XYZ → sRGB se describen por partes, hemos creído conveniente plantear como ejemplo más sencillo la transformación de los datos colorimétricos CIE-(x,y,Y) bajo iluminante C de las muestras de la carta ColorChecker a los espacios sRGB y sYCC (tabla 2.6).

Si buscamos la transformación de color entre los valores (x,y,Y) de las muestras a valores sRGB y a valores sYCC, es importante acotar inicialmente el problema de la equivalencia del punto blanco/negro o la caracterización del iluminante. En particular, los valores (x,y,Y) de los 24 colores de la carta se indican bajo el iluminante C (TC = 6774 K); mientras que el iluminante de referencia en los espacios sRGB y sYCC es el iluminante D65 (TC = 6504 K). Realmente, desde siempre en colorimetría, no aparecen diferencias muy notables entre la colorimetría bajo C o bajo D65 por la similitud de sus temperaturas correlacionadas de color, y en consecuencia, por sus coordenadas cromáticas CIE-1931: (xC=0.3101, yC=0.3163), (xD65=0.3127, yD65=0.3290). No obstante, planteemos ahora la transformación de color entre valores (x,y,Y) bajo iluminante C a valores (x,y,Y) bajo iluminante D65 como ejemplo a cualquier otra transformación de color sencilla entre valores (x,y,Y) con iluminantes diferentes.

El punto de partida de esta transformación o igualación asimétrica de color (tal como se conoce en colorimetría) es una transformación matricial M entre los valores triestímulo XYZ de un color C bajo iluminante C a valores triestímulo XYZ bajo iluminante D65:


TABLA 2.6

Datos colorimétricos de la carta Gretag-Macbeth ColorChecker


Pero, claro está, para determinar numéricamente la matriz M(3 × 3) hemos de conocer las peculiaridades sobre la visión del color en el sistema visual humano. En particular, se necesita la transformatión matricial MV entre los valores CIE-XYZ y los valores RGB fundamentales a nivel retiniano conocidos como valores triestrmulo ργβ de acuerdo con el modelo de apariencia del color CIECAM’97. Así, la transformatión matricial M es:


De esta manera, ahora ya es posible transformar los nuevos valores triestímulo XYZ bajo D65 de las muestras de la carta ColorChecker a valores triestímulo sRGB mediante la siguiente transformación matricial renombrando los valores triestímulo XYZ como valores normalizados respecto al iluminante D65, es decir, entre 0 y 1:


Si fuera el caso que algunos de los valores sRGB calculados resultasen negativos o superiores a 1, entonces el estándar IEC/ITU propone que sean automáticamente descartados o, recordando la nomenclatura de las técnicas de proyección de gamas de reproducción, recortados (clipped) respectivamente a valores 0 ó 1. Para evitar esta limitación de gama de reproducción en el software de codificación del color, IEC/ITU ya han propuesto un espacio sRGB extendido hasta 16 bits por canal denominado xRGB (IEC 1998b).

No obstante, la información en color para una imagen cualquiera no se codifica con valores triestímulo, sino con valores digitales o niveles de gris. Así, si consideramos el nivel estándar de 8 bits ó 256 niveles digitales posibles por cada canal de color sRGB o sYCC, los niveles digitales RGB a 8 bits de las muestras de la carta (tabla 2.6) vienen dados por la ecuación:


Y los niveles digitales sYCC para efectuar la compresión y la transmisión eficiente de la imagen ColorChecker (tabla 2.6) se calculan a partir de la ecua-ción matricial siguiente:


2.3.3 El perfil ICC

ICC (International Color Consortium) es la organización internacional que agrupa a las principales empresas multinacionales dedicadas al sector multimedia (ICC 2001), desde fabricantes-vendedores de escáneres y cámaras (electrónicas y digitales), películas fotográficas, plataformas (hardware), aplicaciones informáticas (software), pantallas de visualización, hasta impresoras e imprentas. Creada en 1993 bajo los auspicios del Instituto de Investigación de Artes Gráficas de Alemania (FOGRA) con solamente 8 miembros, esta organización se ha ampliado en la actualidad con 70 empresas más. Para evitar los problemas de compatibilidad en la creación y transferencia de información digital en color, y resolver el problema del espacio de color dependiente del dispositivo multimedia (fig. 2.4), esta organización propone un formato de fichero común denominado perfil ICC.

La estructura del perfil ICC o algoritmo de gestión del color entre los diferentes dispositivos multimedia consta de cuatro elementos descritos de la forma siguiente (fig. 2.12):

1. Los perfiles o datos sobre las características de reproducción del color de los dispositivos multimedia que proporcionan los fabricantes-vendedores.

2. El módulo de gestión del color (Color Management Module, CMM), que enlaza todos los perfiles para producir las transformaciones de color entre cualquier grupo de dispositivos.

3. La aplicación informática (software) utiliza el módulo de gestión del color (CMM), para manejar las transformaciones de color tal como las necesita el usuario (en gráficos e imágenes).

4. El sistema operativo permite a las aplicaciones acceder a los perfiles y a los módulos de gestión del color (CMM), y proporciona un módulo base de gestión del color en cualquier momento en el que el usuario no tiene instalado un módulo específico de gestión del color.


Fig. 2.12 Esquema de la arquitectura algorítmica del manejo del formato de fichero ICC, más conocido como perfil ICC.

El perfil ICC divide a los dispositivos multimedia en tres categorías: entrada (una cámara digital, por ejemplo), visualización (un monitor CRT, por ejemplo) y salida (una impresora de chorro de tinta, por ejemplo). Para cada clase de dispositivo se usan unos modelos algorítmicos básicos para las transformaciones de color. Estos modelos proporcionan un rango de calidad de color y efectividad en la ejecución de los mismos. Los modelos base permiten seleccionar diferentes combinaciones de equilibrio entre la memoria final de impresión, ejecución y la calidad de la imagen. Los parámetros y datos necesarios para implementar estos modelos se introducen de forma adecuada sobre la estructura base del ficheroperfil de cada dispositivo en el fichero-algoritmo de gestión del color.

El esquema de implementación del formato ICC a través del espacio de color de conexión (Profile Color Space, PCS) que se propone es el siguiente (fig. 2.13). Partiendo de un dispositivo de entrada como un escáner, se pretende llegar a controlar la imagen-color de salida de dos dispositivos convencionales como es un monitor CRT y una impresora de chorro de tinta a color. Los tres dispositivos poseen un espacio de representación del color totalmente distinto. El formato ICC indica cuál ha de ser el espacio de color común (Profile Connection Space, PCS) para ensamblar eficazmente las peculiaridades de los tres dispositivos o sistemas de reproducción del color. Este espacio de color de conexión (PCS) se configura a partir de estándares internacionales de colorimetría como:

1. Valores representativos: observador CIE-1931 XYZ.

2. Metrología: CIE-1931 XYZ o CIE-L*a*b*.

3. Geometría de la medición: 0/45 ó 45/0.

4. Iluminante: D50 (xD50 = 0.3457 , yD50 = 0.3585).

5. Efecto de luz ambiental (Viewing Flare): 0.5-1.0 %.

6. Nivel de iluminación: 200 - 500 lx.

7. Contraste de claridades del entorno: promedio.

El espacio de color PCS intenta representar las apariencias de color deseadas en términos de la colorimetría CIE de los colores que han de ser transferidos sobre el medio de reproducción de referencia y visualizados sobre el entorno de referencia, cuyas características se han listado arriba. Por tanto, esto significa que se orienta hacia los colores que han de ser reproducidos sobre el medio de salida, generalmente sobre papel impreso. Es más, el creador de un perfil ICC está obligado a compensar y ajustar los datos PCS para varios efectos. Tales efectos dependen del tipo del medio de reproducción, si es el de entrada (papel o transparencia), visualización (presentación o previsualización de la salida) o salida (papel impreso o transparencia), incluyendo el tipo de iluminante o equivalencia del blanco, el nivel de iluminación y el tipo de fondo en la visualización.

Vamos a analizar a continuación como ejemplo cuáles son las correcciones y los ajustes de color en el esquema de la figura 2.13 que propugna el perfil ICC. Es decir, partiendo de una escena fotográfica original en formato papel (blanco W1), deseamos controlar el color de la imagen de salida sobre una impresora en formato papel (blanco W2) y en formato transparencia, pasando a través de la previsualización en pantalla CRT de la apariencia de color deseada de la salida.


Fig. 2.13 Esquema de implementación del perfil ICC a través del espacio de color de conexión (PCS) entre un dispositivo de entrada (escáner), uno de visualización (monitor CRT) y otro de salida (impresora CMYK).

2.3.3.1 Correcciones de color y ajustes en los perfiles de entrada

Supongamos un escáner convencional, tal como lo describiremos en el capítulo siguiente, con un dispositivo semiconductor fotosensible acoplado a tres filtros de color RGB y una fuente fluorescente que se ajusta al iluminante F2 (TC = 4230 K, blanco frío). Como se dijo antes, el estándar que vamos a reproducir de forma cruzada tiene como blanco equivalente (o iluminante) al blanco de la escena fotografiada, color que coincidirá con el fondo del papel fotográfico no expuesto. Supongamos que la especificación CIE-1931 XYZ bajo el iluminante equienergético E de este blanco, que denotaremos W1, es (xw1, yw1, Yw1) = (0.3200, 0.3200, 0.83), y la del iluminante F2 es (xF2, yF2, YF2) = (0.3721, 0.3751, 1).

Para crear el fichero-perfil de este dispositivo, debemos insertar una transformación de color M1 entre los datos colorimétricos según F2 (escáner) y según D50 (PCS). Una parte del diseño de esta transformación de color debe incluir una transformación de adaptación cromática, como por ejemplo la de tipo Von Kries descrita en apartados anteriores. Pero en el diseño completo de esta transformación de color M1 el perfil ICC nos permite optar por dos enfoques colorimétricos, con ventajas e inconvenientes en la reproducción final del color.

El enfoque que usa por defecto el formato ICC es el denominado colorimetría relativa, en el que, si bien el balance global de grises o contrastes (tone reproduction) de la escena reproducida varía, las áreas de la escena descritas como brillos, reflejos (áreas saturadas) se mantienen, lo cual consigue mantener aproximadamente la apariencia global y cierta información colorimétrica que se desea no perder. En cambio, el formato ICC permite también el uso de lo que se denomina colorimetría absoluta, en el que se mantiene el balance global de grises, lo cual garantiza mejor que en el otro enfoque la apariencia del color, aunque si los blancos (o iluminantes) de entrada y salida son diferentes, no se mantienen las áreas saturadas de la escena original, e incluso, pueden aparecer otras de forma descontrolada.

Si el primer paso en la transformación de color M1 es una transformación matricial entre los valores triestímulo RGB del escáner y valores triestímulo XYZ (véase cap. 3) bajo el iluminante F2, de forma que la terna (R,G,B) = (1,1,1) se corresponda con la terna (XF2,YF2,ZF2). El siguiente paso ha de implementar uno de los enfoques anteriores. En el caso de la colorimetría absoluta, el resto de la transformación de color es simplemente la transformación de adaptación cromática entre los datos colorimétricos XYZ del escáner bajo F2 a los valores XYZ del espacio PCS bajo D50. El enfoque de la colorimetría relativa, que volverá a repetirse para los ajustes del perfil de salida en modo papel impreso, consiste en reconvertir en este caso el iluminante F2 del escáner como el blanco W1 del papel fotográfico del estándar a reproducir de forma cruzada, previamente a la obligada y posterior transformación de adaptación cromática entre F2 y D50. De esta forma, el blanco ideal o papel blanco 100 % de reflexión del espacio PCS, el iluminante D50, será equivalente al blanco W1 de la escena original. Si la terna [X’(C),Y’(C),Z’(C)] representa la codificación CIE-XYZ de un área-color C escaneada de la escena bajo el iluminante F2, [Xw1,Yw1,Zw1] y [XF2,YF2,ZF2] son las ternas triestímulo de las especificaciones [x,y,Y] anteriores, y MD50-F2 es la transformación matricial de adaptación cromática de tipo Vo n Kries, entonces la terna [X(C),Y(C),Z(C)] del área-color C en el espacio PCS bajo D50 es:


Si la opción escogida hubiera sido la de la colorimetría absoluta, se trabajaría solamente con MD50-F2 y, por tanto, se mantendría el balance de grises o contrastes. Sin embargo, por seleccionar el enfoque de la colorimetría relativa, el balance de grises o contrastes sube un 20.48 % (en la escala Y o β como factor de luminancia), mientras que realmente, en sentido perceptual (L*), la escena se ha transferido un 7.71 % más clara al espacio PCS.

2.3.3.2 Correcciones de color y ajustes en los perfiles de visualización

Seguimos con el proceso iniciado arriba, y el paso siguiente es efectuar los ajustes necesarios en el perfil del monitor CRT para que podamos previsualizar o simular la apariencia de color deseada en la salida, en papel impreso cuyo blanco es W2.

Partimos de la escena escaneada y en apariencia relativa con respecto a W1 especificada en el espacio PCS. Entonces, los colores PCS se transforman primero en las coordenadas del dispositivo de salida usando cualquier técnica preferida de compresión de las gamas de reproducción. Es decir, el primer paso sigue siendo una aplicación del enfoque de la colorimetría relativa. Si la especificación (x,y,Y) del papel W2 es (0.325, 0.310, 0.78), entonces, antes de efectuar el algoritmo GM2 (gamut mapping) entre el espacio PCS y el del dispositivo de salida con las características de las tintas CMYK y el papel W2 (cap. 6), se ejecuta lo siguiente: si la terna [X(C),Y(C),Z(C)] representa la codificación PCS de un área-color C escaneada de la escena bajo el iluminante F2 pero relativizada con respecto a W1, (Xw2,Yw2,Zw2) y (XD50,YD50,ZD50) son las ternas triestímulo de las especificaciones (x,y,Y) anteriores, entonces la terna [X’’(C),Y’’(C),Z’’(C)] del área-color correspondiente C en el medio W2 a transferirse en GM2 es:


En el algoritmo GM2 se efectúan las compresiones necesarias en las escalas de claridad, croma y tono tal como se explicó en apartados anteriores, puesto que el espacio PCS tiene en principio una gama ilimitada de colorantes, y por ende, una gama ilimitada de colores reproducibles. Estos cálculos de compresión se realizan primero en el espacio CIE-L*a*b* y luego han de reconvertirse al espacio XYZ.

Tras este primer paso, se invierte la ecuación anterior para volver al espacio PCS, pero con una gama limitada de colores reproducibles. Ahora, el paso siguiente es la transformación de color M3 entre el espacio PCS y el espacio de color dependiente del monitor CRT (cap. 5) que, vamos a suponer, se ajusta al iluminante D93 (TC = 9300 K), con valores (xD93, yD93, YD93) = (0.2848, 0.2932, 1). Como existe una disparidad entre iluminantes entre PCS y RGB-CRT, inevita-blemente la transformación M3 ha de incluir una transformación de adaptación cromática MD93-D50. Entonces, en teoría, los resultados de la compresión de la gama de reproducción en la salida deberían ser visibles en la escena visualizada.

Es importante recordar aquí el objetivo colorimétrico principal del formato ICC. Con la imagen de la escena visualizada en la pantalla CRT tal como se supone que se verá en papel impreso, es evidente que si medimos los colores en pantalla con un telecolorímetro, la especificación triestímulo XYZ será diferente a la codificada en el espacio PCS, pero se supone, y así se ha intentado, que la apariencia de color que se observa en pantalla se ajustaría a la que se observaría en la escena impresa con las condiciones colorimétricas y de visualización del espacio de referencia PCS.

2.3.3.3 Correcciones de color y ajustes en los perfiles de salida

Ahora estamos en disposición de optar por dos tipos de salida de la escena original escaneada: en papel (W2) o en transparencia. En cuanto a la gestión del color que ejecuta el perfil ICC en la impresión en papel W2, las transformaciones de color ya han sido introducidas arriba. O sea, primero se aplica el enfoque de la colorimetría relativa y, entonces, a través del perfil ICC se selecciona el estilo de compresión de las gamas de reproducción. Aparte de la opción colorimétrica de recorte (clipping) sobre el contorno de la gama de reproducción de salida, el perfil ICC aporta dos estilos de compresión controlada, denominados perceptual (la gama de colores de la imagen se comprime o se ajusta a la gama de colores del dispositivo de salida, donde el balance de grises se mantiene, mientras que la exactitud colorimétrica no se garantiza) y saturación (la saturación/croma de los píxeles de la imagen se mantiene a costa de perder exactitud en la claridad y el tono). El último paso para la impresión en papel es, por supuesto, invertir la transformación de color M2 entre el espacio PCS y el de la impresora, con las características colorimétricas de las tintas CMYK y el papel W2, aspecto que se tratará en profundidad en el capítulo 6 («Reproducción del color en impresoras»).

Si la opción de salida es la de transparencia o diapositiva, resta por hacer los ajustes colorimétricos propios de las condiciones colorimétricas de visualización de una reproducción en transparencia: luz incandescente o halógena tipo A del proyector (TC = 3250 K) con (xA, yA, YA) = (0.4201, 0.3976, 1) y nivel bajo de iluminación ambiental. Si la terna [X(C),Y(C),Z(C)] representa la codificación PCS de un área-color C escaneada de la escena bajo el iluminante F2, pero relativizada con respecto a W1, [X*(C),Y*(C),Z*(C)] la terna triestímulo resultante de aplicar el estilo perceptual de compresión de las gamas de reproducción entre PCS y las características colorimétricas de las tintas CMYK de la impresora (sin considerar W2), de acuerdo con las condiciones de visualización de la salida-transparencia, los ajustes de color necesarios han de implementar un aumento del balance de grises (gamma γ = 1.5) y una transformación de adaptación cromática de tipo von Kries entre D50 y la fuente tipo A. Si designamos como [X^(C),Y^(C),Z^(C)] a la especificación triestímulo que se transfiere a la impresora mediante una transformación de color M4 (cap. 6), ésta quedaría como:


De esta forma, logramos el objetivo colorimétrico principal del formato ICC: notar que la densidad óptica mínima Dmín (τmáx) de la transparencia será equivalente con el iluminante D50, el cual, a su vez, se correspondía con el blanco W1 del papel fotográfico de la escena original que hemos pretendido reproducir de forma cruzada. Y además, aunque los colores medidos sobre la transparencia resultante en su entorno de visualización serán diferentes de los codificados en el espacio PCS, en principio habrá igualación de apariencia del color con respecto a la misma transparencia visualizada en modo reflectivo en el entorno fotocolorimétrico de referencia PCS.

2.3.4 El futuro de la gestión del color

La pretensión de los organismos internacionales de estandarización (IEC, ISO, ICC, etc.) es subdividir la gestión o administración del color en dos frentes, a veces complementarios, como son los formatos ya presentados sRGB e ICC. La codificación o perfil sRGB debería ser predominante para entornos como el hogar y oficinas, con usuarios no profesionales. El formato o perfil ICC quedaría como predominante para los usuarios expertos en sistemas de reproducción y control de color de gama alta, por ejemplo en artes gráficas.

La verdad es todavía queda mucho por hacer sobre este tema; no obstante, las bases sobre lo que es y cómo se pretende solucionar el problema se encuentran en este capítulo. Por ejemplo, las críticas sobre ambos enfoques de gestión del color ya existen en la literatura científica (Green 1998, Lammens 1999). Muchas de las críticas se basan en el problema inherente de implementar los algoritmos fotocolorimétricos en el entorno cuantizado o discreto de la gestión computacional de los microprocesadores (cap. 4: «Almacenamiento y transmisión de imágenes en color») porque, por ejemplo, las transformaciones de color entre dispositivos multimedia se implementan logística y computacionalmente de forma mucho más complicada de como se han explicado aquí.

La crítica principal del perfil sRGB cuestiona si los atajos que propugna el estándar en la gestión del color se implementan y se usan verdaderamente para evitar transformaciones de color redundantes como pasa ahora (Lammens 1999).

Mientras tanto, las críticas al perfil ICC son mucho más numerosas, también porque el proyecto de gestión del color es más ambicioso que el anterior. Pueden resumirse de la forma siguiente (Green 1998, Lammens 1999).

1. La interpretación de PCS: el uso por defecto de la colorimetría relativa y sus consecuencias respecto a la colorimetría absoluta: se igualan los blancos especulares (brillos) en el primero, pero no se mantiene el rango de contrastes o balance de grises; en el segundo ocurre lo contrario.

2. El iluminante de PCS: en el módulo base de gestión del color (CMM base) no es posible implementar una transformación al menos sencilla de adaptación cromática entre D50 y otros iluminantes más extendidos en otros entornos industriales, como el D65 en TV y las industrias textiles.

3. La generación de negro en los procesos de impresión: pasar de RGBescáner a RGBmonitor es aparentemente mucho más sencillo (3 para 3) que entre RGBmonitor y CMYK (3 para 4). En la reproducción impresa la tinta negra se utiliza también para conseguir el mejor balance de grises posible y resaltar los retoques no nítidos y, por tanto, existe un gran número de combinaciones posibles (CMYK) que igualarán un único color (RGB). La elección del algoritmo de generación de negro está influenciado por consideraciones diversas, como la cantidad máxima de tinta-color que puede sobreimprimirse y la importancia de la estabilidad del balance de color en los colores neutros o acromáticos.

4. La caracterización vs. calibración de un dispositivo: los dispositivos exhiben regularmente desviaciones menores a partir de su funcionamiento general bien caracterizado. El formato de fichero no proporciona parámetros específicos que contengan tal información, y aunque es posible para un vendedor-fabricante incluir tales parámetros en sus perfiles (y la habilidad de procesar la información en el módulo de gestión del color CMM), esto sería una excepción en vez de un comportamiento común. La suposición implícitamente hecha por el formato ICC es que esa calibración se ejecuta para mantener el funcionamiento del dispositivo constante, pero no siempre es posible u ocurre así. Por ejemplo, los colorantes que poseen las impresoras digitales (chorro de tinta, etc.) varían significativamente de lote a lote de producción; ya que el usuario no puede llevar a cabo un procedimiento de calibración para asegurar el funcionamiento constante del dispositivo, debería ser posible ajustar el perfil para acomodar las características reales de funcionamiento de tal dispositivo.

5. La proyección de las gamas de reproducción de los dispositivos: los algoritmos de proyección del formato ICC (perceptual, saturación y recorte) representan un número muy reducido y bastante simplificado de todas las técnicas existentes y que generalmente se prefieren en lugar de éstas, pero que, por el momento, no están implementadas.

6. La apariencia del color: como el objetivo colorimétrico principal del formato ICC es conseguir mantener la apariencia del color en la reproducción cruzada del color, el tratamiento de la misma es, por ahora, bastante simplificado en el formato con el uso del espacio CIE-L*a*b* en el espacio PCS, al igual que la selección de la transformación de adaptación cromática de tipo Vo n Kries. Por tanto, parte de lo que se sabe ya sobre apariencia del color (RLAB, LLAB, CIECAM’97) debería ser implementado en futuro cercano sobre un diagrama de flujo de cinco etapas (fig. 2.14) para asegurar el control de la apariencia del color entre dispositivos cruzados de reproducción del color. La clave de este diagrama es que en la etapa intermedia, cuando previamente se han efectuado la caracterización CIE del dispositivo de entrada y el paso al modelo completo de apariencia del color, es donde deberían controlarse todas las operaciones necesarias (proyección de las gamas de colores reproducibles, balance de grises, etc.) para mantener o alterar a voluntad la apariencia del color en el dispositivo de salida, anteriormente claro a la inversión del modelo de apariencia del color y la inversión de la caracterización CIE del dispositivo de salida. Cuanto más completo sea el modelo de apariencia del color en describir los fenómenos perceptuales del color, tanto más seguros estaremos de que no existirá ningún parámetro perceptual cromático que se escape a nuestro control en una reproducción cruzada del color.


Fig. 2.14 Esquema de cómo implementar modelos de apariencia del color en el método de igualación propuesto en las estructuras del perfil ICC con dos espacios perceptuales de color de conexión: a la entrada y a la salida del sistema de gestión del color.

7. Los métodos de interpolación: no están perfectamente definidos los métodos matématicos de interpolación que puede manejar un módulo de gestión del color (CMM) en las transformaciones cuantizadas del color entre dispositivos.

8. Falta de claridad en la descripción de los métodos posibles de creación de las especificaciones de los perfiles de los dispositivos.

9. Para los sistemas de gestión del color basados en el perfil ICC, se necesita ponerse de acuerdo en quiénes van a hacer las transformaciones de color, dónde y cuándo, y estar seguro de que no existirá ambigüedad sobre la interpretación de los datos etiquetados y no etiquetados de los perfiles de los dispositivos.

10. La organización ICC tiene dos objetivos principales en el formato de fichero ICC: primero, facilitar la interoperatividad de perfiles desde fuentes diferentes sobre plataformas (hardware) y aplicaciones (software) diferentes y, en segundo lugar, facilitar la comunicación consistente de color entre los dispositivos. Se puede decir que la especificación cumple el primer objetivo proporcionando un formato de fichero y un espacio de color de conexión razonablemente fuertes y claramente definidos, con un comportamiento común para los componentes dentro de la arquitectura de gestión del color. Sin embargo, el segundo objetivo está menos conseguido, y existen problemas serios sobre las inconsistencias posibles procedentes de los distintos métodos de proyectar los colores de un dispositivo en y desde el espacio PCS. El formato de fichero ICC es un estándar que está evolucionando y se esperan nuevas investigaciones para clarificar esta cuestión en el futuro.

Como resumen de todo este capítulo, podríamos extraer unas críticas generales o cuestiones a resolver sobre los sistemas de gestión del color recordando con ello que este campo de la colorimetría aplicada es un campo en evolución constante debido al trasfondo científico y tecnológico que subyace en el mismo. Así pues, los aspectos que deberían resolverse son:

1. Cada componente de una cadena de reproducción cruzada del color necesita hacer su parte de gestión del color, pero ninguna más. Los softwares de control (drivers) de los escáneres no deberían registrar el color en los espacios de color de las impresoras o imprentas, ni los softwares de control (drivers) de las impresoras o imprentas no necesitan saber qué espacio de color usa el escáner.

2. CMYK es un espacio de color que todavía se sostendrá en el futuro cercano de las artes gráficas. Se necesita, por tanto, que se mantenga completamente incluso en sistemas de reproducción y gestión del color centrados en espacios de color independientes del dispositivo.

3. Las intenciones de conversión entre espacios de color son apropiadas y necesitan conservarse para la clase alta de gestión del color, pero un conversor que se ajuste a todos los tipos de perfiles o a todas las transformaciones podría ser apropiado para la clase baja de gestión del color.

4. Actualmente, existen demasiados procedimientos para hacerlo de forma incorrecta y muy pocos para hacerlo bien (Lammens 1999). Se necesita trabajar con configuraciones comunes e interfaces para usuarios que pro-porcionen los controles del color de forma consistente, inteligible y no redundante.

5. Para mantener todos los tipos posibles de sistemas de reproducción y gestión del color, los fabricantes de equipos multimedia tienen que añadir hardware y/o software complejos en sus dispositivos. Se necesita estándares bien definidos de amplio uso industrial sobre cómo manejar el color de forma que este tipo de complejidad pueda eliminarse o simplificarse, o al menos no duplicarse.

2.4 Apéndice: espacios de color RIMM/ROMM RGB, e-sRGB e ICC-2001

El mundo de la gestión del color no para de evolucionar. Tras lo explicado en los párrafos anteriores, parecía necesario mejorar los defectos del formato ICC, y al fin, se ha conseguido. Si la versión de trabajo (v. 3.5) de este capítulo es del año 1998, ya ha aparecido la versión núm. 4 (ICC 2001), cuyas característi-cas colorimétricas novedosas (tabla 2.7) veremos resumidamente a continuación.

TABLA 2.7

Datos colorimétricos de los espacios de representación del color e-sRGB, ICC PCS, ROMM RGB y RIMM RGB


Con el advenimiento de gran variedad de dispositivos o periféricos, parece que ya no es necesario centrar el flujo de la información cromática alrededor de la visualización de la imagen desde un monitor estándar tipo sRGB. Por ejemplo, ya resulta bastante común enviar directamente las fotos captadas con una cámara digital a una impresora de sublimación. Esto significa que ya no tiene sentido limitar la gama de colores de la imagen a la de un monitor tipo CRT, puesto que no se utiliza en el proceso. Así pues, un nuevo espacio de color independiente del dispositivo, e-sRGB (PIMA 2001, SRGB 2001), pretende capitalizar los nuevos retos de la gestión del color sobre el intercambio de información cromática entre nuevos dispositivos multimedia donde el monitor CRT no sea imprescindible. Para ello, dado que el estándar sRGB seguirá en marcha durante varios años más, se ha optado por un enfoque interoperativo, de forma que el nuevo estándar es una extensión del espacio sRGB. Aunque la propuesta inicial es de PIMA (Photographic and Imaging Manufacturers Association), ya está en fase de desarrollo desde ISO (ISO 22028) y de igual forma desde IEC (IEC 61966-2-2). Por tanto, es mera cuestión de tiempo que este informe pase a ser definitivamente un estándar internacional más bien dentro del campo de la tecnología del color.

Por otra parte, se ha acordado recientemente que la mayoría de las imágenes se pueden clasificar en dos tipos: el referido al dispositivo de transferencia o salida (output-referred) y el referido al contenido colorimétrico original de la escena (scene-referred). Para ello, una familia de sistemas de representación del color de una gran gama de colores reproducibles (con algunos primarios irreales) se han definido también para el almacenamiento, el intercambio y la manipulación de imágenes (Spaulding, Woolfe, Giorgianni 2000). El espacio estándar RGB de salida (Reference Output Medium Metric RGB, ROMM RGB) es un sistema de color de amplia gama diseñado para usarse en las imágenes ya procesadas (manipuladas, listas para transferir, imprimir, etc.). Este espacio está fuertemente ligado al formato ICC PCS, y es compatible por ejemplo con el espacio de color que usa Adobe Photoshop. ROMM RGB está asociado a un entorno específico de visualización y medio de soporte (tabla 2.7), permitiendo una comunicación exacta y eficiente de la apariencia del color de la imagen. El espacio estándar RGB de entrada (Reference Input Medium Metric RGB, RIMM RGB) se basa en el mismo espacio de representación ROMM RGB, y está diseñado para codificar la apariencia del color de imágenes no manipuladas o brutas. Se le asocia, por tanto, con un conjunto de condiciones de visualización propio de escenas al aire libre, es decir, con luz solar, con iluminaciones elevadas y amplio rango dinámico de luminancias (tabla 2.7).

El monitor o la pantalla estándar de visualización del espacio e-sRGB posee un blanco de cromaticidad D65 y luminancia YW = 80 cd/m2, un negro de luminancia YK = 1 cd/m2, y los primarios RGB tienen las mismas cromaticidades que los del espacio sRGB (tabla 2.7). Con estos datos, la transformación de color entre e-sRGB y CIE-XYZ es ya conocida.


El paso no lineal a valores digitales, que depende del nivel de digitalización n (10, 12, 16 bits), es el siguiente:


Así, la conversión de sRGB a e-sRGB es:


Y, la conversión de e-sRGB a e-sYCC es:


Dadas las diferencias colorimétricas existentes entre los espacios e-sRGB y ROMM RGB (tabla 2.7), la conversión entre estos dos espacios de color pasa inicialmente por escalar los valores colorimétricos (lineales) e-sRGB entre 0.53 y 1.68 para, de esta forma, aplicar la ecuación matricial siguiente:


Los valores lineales ROMM RGB se escalan entre 0 y 1, para a continuación, aplicar la transformación no lineal a valores digitales del modo siguiente:


La transformación entre ROMM RGB y ICC PCS es la siguiente:


dado que la nueva especificación ICC PCS se aplica tras la normalización:


donde XPCSYPCSZPCS son los valores triestímulo de la imagen, XW = 85.81, YW = 89.00 (densidad visual D = 0.0506), ZW = 73.42, los valores triestímulo del blanco de referencia del medio, y XK = 0.2980, YK = 0.3091 (densidad visual D = 2.5099), ZK = 0.2550, los valores triestímulo del negro de referencia del medio.

En cualquier caso de manipulación (perceptual o colorimétrica) de la gama de colores reproducibles, los valores triestímulo (lineales) en el espacio e-sRGB deben escalarse entre 0.53 y 1.68 para poder aplicar directamente la transformación matricial siguiente:


Por último, el espacio estándar de entrada RIMM RGB, el que se usará para codificar la colorimetría bruta de una escena, utiliza la misma transformación de color que el espacio ROMM RGB (2.23), pero con la salvedad de que la transformación no lineal a valores digitales se obtiene usando la transformación implementada en Photo CD:


Tecnología del color

Подняться наверх