Читать книгу Transporters and Drug-Metabolizing Enzymes in Drug Toxicity - Albert P. Li - Страница 47

References

Оглавление

1 1 Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regulatory Toxicology and Pharmacology 2000; 32(1): 56–67.

2 2 Chen M, Suzuki A, Thakkar S, Yu K, Hu C, Tong W. DILIrank: the largest reference drug list ranked by the risk for developing drug‐induced liver injury in humans. Drug Discovery Today 2016; 21(4): 648–53.

3 3 Chen M, Vijay V, Shi Q, Liu Z, Fang H, Tong W. FDA‐approved drug labeling for the study of drug‐induced liver injury. Drug Discovery Today 2011; 16 (15–16): 697–703.

4 4 Watkins P. Drug safety sciences and the bottleneck in drug development. Clinical Pharmacology & Therapeutics 2011; 89(6): 788–90.

5 5 US FDA. Drug‐Induced Liver Injury: Premarketing Clinical Evaluation; 2009. Available from: https://www.fda.gov/regulatory‐information/search‐fda‐guidance‐documents/drug‐induced‐liver‐injury‐premarketing‐clinical‐evaluation.

6 6 Zanger UM, Schwab M. Cytochrome P 450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & Therapeutics 2013; 138(1): 103–41.

7 7 Uetrecht JP, editor Myeloperoxidase as a Generator of Drug Free Radicals. Biochemical Society Symposia; 1995: Portland Press Limited.

8 8 Srivastava A, Maggs J, Antoine D, Williams D, Smith D, Park B. Role of reactive metabolites in drug‐induced hepatotoxicity. In: Uetrecht JP, editor Adverse Drug Reactions; 2010: Springer. p. 165–94.

9 9 Bischoff R, Schlüter H. Amino acids: chemistry, functionality and selected non‐enzymatic post‐translational modifications. Journal of Proteomics 2012; 75(8): 2275–96.

10 10 Walgren JL, Mitchell MD, Thompson DC. Role of metabolism in drug‐induced idiosyncratic hepatotoxicity. Critical Reviews in Toxicology 2005; 35(4): 325–61.

11 11 Dahms M, Spahn‐Langguth H. Covalent binding of acidic drugs via reactive intermediates: detection of benoxaprofen and flunoxaprofen protein adducts in biological material. Die Pharmazie 1996; 51 (11): 874–81.

12 12 FDA TU. Safety Testing of Drug Metabolites Guidance for Industry; 2020. Available from: https://www.fda.gov/media/72279/download.

13 13 Uetrecht J. Prediction of a new drug's potential to cause idiosyncratic reactions. Current Opinion in Drug Discovery & Development 2001; 4(1): 55–9.

14 14 Lammert C, Bjornsson E, Niklasson A, Chalasani N. Oral medications with significant hepatic metabolism at higher risk for hepatic adverse events. Hepatology 2010; 51(2): 615–20.

15 15 Chen M, Borlak J, Tong W. A model to predict severity of drug‐induced liver injury in humans. Hepatology 2016; 64(3): 931–40.

16 16 Limban C, Nuţă DC, Chiriţă C, Negreș S, Arsene AL, Goumenou M, et al. The use of structural alerts to avoid the toxicity of pharmaceuticals. Toxicology Reports 2018; 5: 943–53.

17 17 Stepan AF, Walker DP, Bauman J, Price DA, Baillie TA, Kalgutkar AS, et al. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chemical Research in Toxicology 2011; 24(9): 1345–410.

18 18 Enoch S, Ellison C, Schultz T, Cronin M. A review of the electrophilic reaction chemistry involved in covalent protein binding relevant to toxicity. Critical Reviews in Toxicology 2011; 41(9): 783–802.

19 19 Claesson A, Minidis A. Systematic approach to organizing structural alerts for reactive metabolite formation from potential drugs. Chemical Research in Toxicology 2018; 31(6): 389–411.

20 20 Evans DC, Watt AP, Nicoll‐Griffith DA, Baillie TA. Drug− protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chemical Research in Toxicology 2004; 17(1): 3–16.

21 21 Nakayama S, Takakusa H, Watanabe A, Miyaji Y, Suzuki W, Sugiyama D, et al. Combination of GSH trapping and time‐dependent inhibition assays as a predictive method of drugs generating highly reactive metabolites. Drug Metabolism and Disposition 2011; 39(7): 1247–54.

22 22 Zaïr ZM, Eloranta JJ, Stieger B, Kullak‐Ublick GA. Pharmacogenetics of OATP (SLC21/SLCO), OAT and OCT (SLC22) and PEPT (SLC15) transporters in the intestine, liver and kidney. Pharmacogenomics, 2008, 9(5):597–624.

23 23 Dong AN, Tan BH, Pan Y, Ong CE. Cytochrome P 450 genotype‐guided drug therapies: an update on current states. Clinical and Experimental Pharmacology and Physiology 2018; 45 (10): 991–1001.

24 24 Khurana V, Minocha M, Pal D, Mitra AK. Inhibition of OATP‐1B1 and OATP‐1B3 by tyrosine kinase inhibitors. Drug Metabolism and Drug Interactions 2014; 29(4): 249–59.

25 25 Campbell SD, de Morais SM, Xu JJ. Inhibition of human organic anion transporting polypeptide OATP 1B1 as a mechanism of drug‐induced hyperbilirubinemia. Chemico‐Biological Interactions 2004; 150(2): 179–87.

26 26 Chiou WJ, de Morais SM, Kikuchi R, Voorman RL, Li X, Bow DA. in vitro OATP1B1 and OATP1B3 inhibition is associated with observations of benign clinical unconjugated hyperbilirubinemia. Xenobiotica 2014; 44(3): 276–82.

27 27van de Steeg E, Stránecký V, Hartmannová H, Nosková L, Hřebíček M, Wagenaar E, et al. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. The Journal of Clinical Investigation 2012; 122(2): 519–28.

28 28 Denk GU, Soroka CJ, Takeyama Y, Chen W‐S, Schuetz JD, Boyer JL. Multidrug resistance‐associated protein 4 is up‐regulated in liver but down‐regulated in kidney in obstructive cholestasis in the rat. Journal of Hepatology 2004; 40(4): 585–91.

29 29 Borst P, de Wolf C, van de Wetering K. Multidrug resistance‐associated proteins 3, 4, and 5. Pflügers Archiv‐European Journal of Physiology 2007; 453(5): 661–73.

30 30 Vaz FM, Paulusma CC, Huidekoper H, de Ru M, Lim C, Koster J, et al. Sodium taurocholate cotransporting polypeptide (SLC10A1) deficiency: conjugated hypercholanemia without a clear clinical phenotype. Hepatology 2015; 61(1): 260–7.

31 31 Davit‐Spraul A, Gonzales E, Baussan C, Jacquemin E. Progressive familial intrahepatic cholestasis. Orphanet Journal of Rare Diseases 2009; 4(1): 1.

32 32 Paulusma CC, Kool M, Bosma PJ, Scheffer GL, ter Borg F, Scheper RJ, et al. A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin–Johnson syndrome. Hepatology 1997; 25(6): 1539–42.

33 33 Mahdi ZM, Synal‐Hermanns U, Yoker A, Locher KP, Stieger B. Role of multidrug resistance protein 3 in antifungal‐induced cholestasis. Molecular Pharmacology 2016; 90(1): 23–34.

34 34 Dawson S, Stahl S, Paul N, Barber J, Kenna JG. in vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug‐induced liver injury in humans. Drug Metabolism and Disposition 2012; 40(1): 130–8.

35 35 Fattinger K, Funk C, Pantze M, Weber C, Reichen J, Stieger B, et al. The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clinical Pharmacology & Therapeutics 2001; 69(4): 223–31.

36 36 Kis E, Ioja E, Rajnai Z, Jani M, Méhn D, Herédi‐Szabó K, et al. BSEP inhibition–in vitro screens to assess cholestatic potential of drugs. Toxicology in vitro 2012; 26(8): 1294–9.

37 37 Chan R, Benet LZ. Measures of BSEP inhibition in vitro are not useful predictors of DILI. Toxicological Sciences 2017; 162(2): 499–508.

38 38 Watkins PB. The DILI‐sim initiative: insights into hepatotoxicity mechanisms and biomarker interpretation. Clinical and Translational Science 2019; 12(2): 122–9.

39 39 Guo YX, Xu XF, Zhang QZ, Li C, Deng Y, Jiang P, et al. The inhibition of hepatic bile acids transporters Ntcp and Bsep is involved in the pathogenesis of isoniazid/rifampicin‐induced hepatotoxicity. Toxicology Mechanisms and Methods 2015; 25(5): 382–7.

40 40 Feng B, Xu JJ, Bi Y‐A, Mireles R, Davidson R, Duignan DB, et al. Role of hepatic transporters in the disposition and hepatotoxicity of a HER2 tyrosine kinase inhibitor CP‐724, 714. Toxicological Sciences 2009; 108(2): 492–500.

41 41 Klein K, Zanger UM. Pharmacogenomics of cytochrome P450 3A4: recent progress toward the "missing heritability" problem. Frontiers in Genetics 2013; 4: 12.

42 42 Amacher DE. The primary role of hepatic metabolism in idiosyncratic drug‐induced liver injury. Expert Opinion on Drug Metabolism & Toxicology 2012; 8(3): 335–47.

43 43 Madian AG, Wheeler HE, Jones RB, Dolan ME. Relating human genetic variation to variation in drug responses. Trends in Genetics: TIG 2012; 28 (10): 487–95.

44 44 Pachkoria K, Lucena MI, Molokhia M, Cueto R, Carballo AS, Carvajal A, et al. Genetic and molecular factors in drug‐induced liver injury: a review. Current Drug Safety 2007; 2(2): 97–112.

45 45 FDA TU. Table of Pharmacogenetic Associations; 2020. Available from: https://www.fda.gov/medical‐devices/precision‐medicine/table‐pharmacogenetic‐associations?utm_campaign=2020‐02‐20%20Pharmacogenetic%20Associations%3A%20Scientific%20Evidence%20Underlying%20Gene‐Drug%20Interactions&utm_medium=email&utm_source=Eloqua.

46 46 Sgro C, Clinard F, Ouazir K, Chanay H, Allard C, Guilleminet C, et al. Incidence of drug‐induced hepatic injuries: a French population‐based study. Hepatology (Baltimore, MD) 2002; 36(2): 451–5.

47 47 Ariyoshi N, Iga Y, Hirata K, Sato Y, Miura G, Ishii I, et al. Enhanced susceptibility of HLA‐mediated ticlopidine‐induced idiosyncratic hepatotoxicity by CYP2B6 polymorphism in Japanese. Drug Metabolism and Pharmacokinetics 2010; 25(3): 298–306.

48 48 Yimer G, Amogne W, Habtewold A, Makonnen E, Ueda N, Suda A, et al. High plasma efavirenz level and CYP2B6*6 are associated with efavirenz‐based HAART‐induced liver injury in the treatment of naïve HIV patients from Ethiopia: a prospective cohort study. The Pharmacogenomics Journal 2012; 12(6): 499–506.

49 49 Markova SM, De Marco T, Bendjilali N, Kobashigawa EA, Mefford J, Sodhi J, et al. Association of CYP2C9*2 with bosentan‐induced liver injury. Clinical Pharmacology & Therapeutics 2013; 94(6): 678–86.

50 50 Seyfarth H‐J, Favreau N, Tennert C, Ruffert C, Halank M, Wirtz H, et al. Genetic susceptibility to hepatoxicity due to bosentan treatment in pulmonary hypertension. Annals of Hepatology 2014; 13(6): 803–9.

51 51 Lee, SW, Chung, L, Huang, HH, Chuang, TY, Liou, YH, and Wu, L. NAT2 and CYP2E1 polymorphisms and susceptibility to first‐line anti‐tuberculosis drug‐induced hepatitis. The International Journal of Tuberculosis and Lung Disease 2010; 14: 622–626.

52 52 Azuma J, Ohno M, Kubota R, Yokota S, Nagai T, Tsuyuguchi K, et al. NAT2 genotype guided regimen reduces isoniazid‐induced liver injury and early treatment failure in the 6‐month four‐drug standard treatment of tuberculosis: a randomized controlled trial for pharmacogenetics‐based therapy. European Journal of Clinical Pharmacology 2013; 69(5): 1091–101.

53 53 Cho H‐J, Koh W‐J, Ryu Y‐J, Ki C‐S, Nam M‐H, Kim J‐W, et al. Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug‐induced hepatotoxicity in Korean patients with pulmonary tuberculosis. Tuberculosis (Edinburgh, Scotland) 2007; 87(6): 551–6.

54 54 Acuña G, Foernzler D, Leong D, Rabbia M, Smit R, Dorflinger E, et al. Pharmacogenetic analysis of adverse drug effect reveals genetic variant for susceptibility to liver toxicity. The Pharmacogenomics Journal 2002; 2(5): 327–34.

55 55 Daly AK, Aithal GP, Leathart JB, Swainsbury RA, Dang TS, Day CP. Genetic susceptibility to diclofenac‐induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology 2007; 132(1): 272–81.

56 56 Lazarska KE, Dekker SJ, Vermeulen NPE, Commandeur JNM. Effect of UGT2B7*2 and CYP2C8*4 polymorphisms on diclofenac metabolism. Toxicology Letters 2018; 284: 70–8.

57 57 Watanabe I, Tomita A, Shimizu M, Sugawara M, Yasumo H, Koishi R, et al. A study to survey susceptible genetic factors responsible for troglitazone‐associated hepatotoxicity in Japanese patients with type 2 diabetes mellitus. Clinical Pharmacology & Therapeutics 2003; 73(5): 435–55.

58 58 Ritchie MD, Haas DW, Motsinger AA, Donahue JP, Erdem H, Raffanti S, et al. Drug transporter and metabolizing enzyme gene variants and nonnucleoside reverse‐transcriptase inhibitor hepatotoxicity. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America 2006; 43(6): 779–82.

59 59 Haas DW, Bartlett JA, Andersen JW, Sanne I, Wilkinson GR, Hinkle J, et al. Pharmacogenetics of nevirapine‐associated hepatotoxicity: an Adult AIDS Clinical Trials Group collaboration. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America 2006; 43(6): 783–6.

60 60 Lang C, Meier Y, Stieger B, Beuers U, Lang T, Kerb R, et al. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug‐induced liver injury. Pharmacogenetics & Genomics 2007; 17(1): 47–60.

61 61 Cao K, Ren G, Lu C, Wang Y, Tan Y, Zhou J, et al. ABCC2 c.‐24 C> T single‐nucleotide polymorphism was associated with the pharmacokinetic variability of deferasirox in Chinese subjects. European Journal of Clinical Pharmacology 2020; 76(1): 51–9.

62 62 Zanger UM, Klein K, Thomas M, Rieger JK, Tremmel R, Kandel BA, et al. Genetics, epigenetics, and regulation of drug‐metabolizing cytochrome p450 enzymes. Clinical Pharmacology and Therapeutics 2014; 95(3): 258–61.

63 63 Hirota T, Ieiri I, Takane H, Maegawa S, Hosokawa M, Kobayashi K, et al. Allelic expression imbalance of the human CYP3A4 gene and individual phenotypic status. Human Molecular Genetics 2004; 13(23): 2959–69.

64 64 Neuvonen PJ, Kantola T, Kivistö KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clinical Pharmacology and Therapeutics 1998; 63(3): 332–41.

65 65 Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. The Pharmacogenomics Journal 2011; 11(4): 274–86.

66 66 Lamba V, Panetta JC, Strom S, Schuetz EG. Genetic predictors of interindividual variability in hepatic CYP3A4 expression. Journal of Pharmacology and Experimental Therapeutics 2010; 332(3): 1088–99.

67 67 Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nature Genetics 2001; 27(4): 383–91.

68 68 Elens L, Bouamar R, Hesselink DA, Haufroid V, van der Heiden IP, van Gelder T, et al. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clinical Chemistry 2011; 57 (11): 1574–83.

69 69 Hesselink DA, van Schaik RHN, van der Heiden IP, van der Werf M, Gregoor PJHS, Lindemans J, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR‐1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clinical Pharmacology and Therapeutics 2003; 74(3): 245–54.

70 70 Andrews LM, Li Y, De Winter BCM, Shi Y‐Y, Baan CC, van Gelder T, et al. Pharmacokinetic considerations related to therapeutic drug monitoring of tacrolimus in kidney transplant patients. Expert Opinion on Drug Metabolism & Toxicology. 2017; 13 (12): 1225–36.

71 71 Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part I. Clinical Pharmacokinetics 2010; 49(3): 141–75.

72 72 Birdwell KA, Grady B, Choi L, Xu H, Bian A, Denny JC, et al. The use of a DNA biobank linked to electronic medical records to characterize pharmacogenomic predictors of tacrolimus dose requirement in kidney transplant recipients. Pharmacogenetics and Genomics 2012; 22(1): 32–42.

73 73 Sachse C, Brockmöller J, Bauer S, Roots I. Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. American Journal of Human Genetics 1997; 60(2): 284–95.

74 74 Johansson I, Oscarson M, Yue QY, Bertilsson L, Sjöqvist F, Ingelman‐Sundberg M. Genetic analysis of the Chinese cytochrome P4502D locus: characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxylation. Molecular Pharmacology 1994; 46(3): 452–9.

75 75 Masimirembwa C, Persson I, Bertilsson L, Hasler J, Ingelman‐Sundberg M. A novel mutant variant of the CYP2D6 gene (CYP2D6*17) common in a black African population: association with diminished debrisoquine hydroxylase activity. British Journal of Clinical Pharmacology 1996; 42(6): 713–9.

76 76 Owusu Obeng A, Hamadeh I, Smith M. Review of opioid pharmacogenetics and considerations for pain management. Pharmacotherapy 2017; 37(9): 1105–21.

77 77 Rodieux F, Vutskits L, Posfay‐Barbe KM, Habre W, Piguet V, Desmeules JA, et al. When the safe alternative is not that safe: tramadol prescribing in children. Frontiers in Pharmacology 2018; 9: 227–13.

78 78 Stamer UM, Musshoff F, Kobilay M, Madea B, Hoeft A, Stuber F. Concentrations of tramadol and O‐desmethyltramadol enantiomers in different CYP2D6 genotypes. Clinical Pharmacology and Therapeutics 2007; 82(1): 41–7.

79 79 Gasche Y, Daali Y, Fathi M, Chiappe A, Cottini S, Dayer P, et al. Codeine intoxication associated with ultrarapid CYP2D6 metabolism. The New England Journal of Medicine 2004; 351 (27): 2827–31.

80 80 Morgan MY, Reshef R, Shah RR, Oates NS, Smith RL, Sherlock S. Impaired oxidation of debrisoquine in patients with perhexiline liver injury. Gut 1984; 25 (10): 1057–64.

81 81 Barbhaiya RH, Buch AB, Greene DS. Single and multiple dose pharmacokinetics of nefazodone in subjects classified as extensive and poor metabolizers of dextromethorphan. British Journal of Clinical Pharmacology 1996; 42(5): 573–81.

82 82 Johnson JA, Caudle KE, Gong L, Whirl‐Carrillo M, Stein CM, Scott SA, et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for pharmacogenetics‐guided warfarin dosing: 2017 update. Clinical Pharmacology & Therapeutics 2017; 102(3): 397–404.

83 83 Kaminsky LS, Zhang ZY. Human P450 metabolism of warfarin. Pharmacology & Therapeutics. 1997; 73(1): 67–74.

84 84 Sanderson S, Emery J, Higgins J. CYP2C9 gene variants, drug dose, and bleeding risk in warfarin‐treated patients: a HuGEnet systematic review and meta‐analysis. Genetics in Medicine: Official Journal of the American College of Medical Genetics 2005; 7(2): 97–104.

85 85 Consortium IWP, Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. The New England Journal of Medicine 2009; 360(8): 753–64.

86 86 Morin S, Loriot MA, Poirier JM, Tenneze L, Beaune PH, Funck‐Brentano C, et al. Is diclofenac a valuable CYP2C9 probe in humans? European Journal of Clinical Pharmacology 2001; 56 (11): 793–7.

87 87 Yasar U, Eliasson E, Forslund‐Bergengren C, Tybring G, Gadd M, Sjoqvist F, et al. The role of CYP2C9 genotype in the metabolism of diclofenac in vivo and in vitro. European Journal of Clinical Pharmacology 2001; 57 (10): 729–35.

88 88 Aithal GP, Day CP, Leathart JB, Daly AK. Relationship of polymorphism in CYP2C9 to genetic susceptibility to diclofenac‐induced hepatitis. Pharmacogenetics 2000; 10(6): 511–8.

89 89 Sevilla‐Mantilla C, Ortega L, Agúndez JAG, Fernández‐Gutiérrez B, Ladero JM, Díaz‐Rubio M. Leflunomide‐induced acute hepatitis. Digestive & Liver Disease: Official Journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver 2004; 36(1): 82–4.

90 90de Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, Goldstein JA. Identification of a new genetic defect responsible for the polymorphism of (S)‐mephenytoin metabolism in Japanese. Molecular Pharmacology 1994; 46(4): 594–8.

91 91 Hulot J‐S, Bura A, Villard E, Azizi M, Remones V, Goyenvalle C, et al. Cytochrome P450 2C19 loss‐of‐function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood 2006; 108(7): 2244–7.

92 92 Collet J‐P, Hulot J‐S, Pena A, Villard E, Esteve J‐B, Silvain J, et al. Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet (London, England) 2009; 373 (9660): 309–17.

93 93 Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, et al. Cytochrome p‐450 polymorphisms and response to clopidogrel. The New England Journal of Medicine 2009; 360(4): 354–62.

94 94 Horsmans Y, Lannes D, Pessayre D, Larrey D. Possible association between poor metabolism of mephenytoin and hepatotoxicity caused by Atrium, a fixed combination preparation containing phenobarbital, febarbamate and difebarbamate. Journal of Hepatology 1994; 21(6): 1075–9.

95 95 Farrell GC, Liddle C. Drugs and the liver updated, 2002. Seminars in Liver Disease 2002; 22(2): 109–13.

96 96 Lamba V, Lamba J, Yasuda K, Strom S, Davila J, Hancock ML, et al. Hepatic CYP2B6 expression: gender and ethnic differences and relationship to CYP2B6 genotype and CAR (constitutive androstane receptor) expression. Journal of Pharmacology and Experimental Therapeutics 2003; 307(3): 906–22.

97 97 Ward BA, Gorski JC, Jones DR, Hall SD, Flockhart DA, Desta Z. The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. Journal of Pharmacology and Experimental Therapeutics 2003; 306(1): 287–300.

98 98 Strassburg CP. Pharmacogenetics of Gilbert’s syndrome. Pharmacogenomics 2008; 9(6): 703–15.

99 99 Bosma PJ, Chowdhury JR, Bakker C, Gantla S, de Boer A, Oostra BA, et al. The genetic basis of the reduced expression of bilirubin UDP‐glucuronosyltransferase 1 in Gilbert’s syndrome. The New England Journal of Medicine 1995; 333 (18): 1171–5.

100 100 Zhang D, Zhang D, Cui D, Gambardella J, Ma L, Barros A, et al. Characterization of the UDP glucuronosyltransferase activity of human liver microsomes genotyped for the UGT1A1*28 polymorphism. Drug Metabolism and Disposition 2007; 35 (12): 2270–80.

101 101 Tukey RH, Strassburg CP, Mackenzie PI. Pharmacogenomics of human UDP‐glucuronosyltransferases and irinotecan toxicity. Molecular Pharmacology 2002; 62(3): 446–50.

102 102 Metushi IG, Cai P, Zhu X, Nakagawa T, Uetrecht JP. A fresh look at the mechanism of isoniazid‐induced hepatotoxicity. Clinical Pharmacology & Therapeutics 2011; 89(6): 911–4.

103 103 Tostmann A, Boeree MJ, Aarnoutse RE, de Lange WCM, van der Ven AJAM, Dekhuijzen R. Antituberculosis drug‐induced hepatotoxicity: concise up‐to‐date review. Journal of Gastroenterology & Hepatology 2008; 23(2): 192–202.

104 104 Fukino K, Sasaki Y, Hirai S, Nakamura T, Hashimoto M, Yamagishi F, et al. Effects of N‐acetyltransferase 2 (NAT2), CYP2E1 and Glutathione‐S‐transferase (GST) genotypes on the serum concentrations of isoniazid and metabolites in tuberculosis patients. The Journal of Toxicological Sciences 2008; 33(2): 187–95.

105 105 Saukkonen JJ, Cohn DL, Jasmer RM, Schenker S, Jereb JA, Nolan CM, et al. An official ATS statement: hepatotoxicity of antituberculosis therapy. American Journal of Respiratory and Critical Care Medicine 2006; 174(8): 935–52.

106 106 Vuilleumier N, Rossier MF, Chiappe A, Degoumois F, Dayer P, Mermillod B, et al. CYP2E1 genotype and isoniazid‐induced hepatotoxicity in patients treated for latent tuberculosis. European Journal of Clinical Pharmacology 2006; 62(6): 423–9.

107 107 Ashrafian H, Horowitz JD, Frenneaux MP. Perhexiline. Cardiovascular Drug Reviews 2007; 25(1): 76–97.

108 108 Ciccacci C, Borgiani P, Ceffa S, Sirianni E, Marazzi MC, Altan AMD, et al. Nevirapine‐induced hepatotoxicity and pharmacogenetics: a retrospective study in a population from Mozambique. Pharmacogenomics 2010; 11(1): 23–31.

109 109 Lamba J, Strom S, Venkataramanan R, Thummel KE, Lin YS, Liu W, et al. MDR1 genotype is associated with hepatic cytochrome P450 3A4 basal and induction phenotype. Clinical Pharmacology & Therapeutics 2006; 79(4): 325–38.

110 110 Choi JH, Ahn BM, Yi J, Lee JH, Lee JH, Nam SW, et al. MRP2 haplotypes confer differential susceptibility to toxic liver injury. Pharmacogenetics and Genomics 2007; 17(6): 403–15.

111 111 Chalasani N, Björnsson E. Risk factors for idiosyncratic drug‐induced liver injury. Gastroenterology 2010; 138(7): 2246–59.

112 112 Chen M, Suzuki A, Borlak J, Andrade RJ, Lucena MI. Drug‐induced liver injury: interactions between drug properties and host factors. Journal of Hepatology 2015; 63(2): 503–14.

113 113 Li AP. A review of the common properties of drugs with idiosyncratic hepatotoxicity and the “multiple determinant hypothesis” for the manifestation of idiosyncratic drug toxicity. Chemico‐Biological Interactions 2002; 142 (1–2): 7–23.

Transporters and Drug-Metabolizing Enzymes in Drug Toxicity

Подняться наверх