Читать книгу Левитация, или Полёты камней и мегалитов в воздухе - Александр Матанцев - Страница 18
Высказывания ученых об уменьшении гравитации и левитации
Оптическая левитация
ОглавлениеВозможность движения частиц под действием света была предсказана еще Кеплером. Корпускулярная теория света стала еще одним шагом на пути физического обоснования этой идеи. Существование светового давления было доказано российским ученым П. Н. Лебедевым. Но другой ученый Дж. Пойтинг, признавая это существование, заявил, что «малость светового давления исключает его из рассмотрения в земных делах».
О возможности практического использования оптической левитации современные ученые говорят уже всерьез. Еще в начале прошлого века Эренхафтом был открыт эффект движения частиц пыли, взвешенных в воздухе в луче мощной лампы, причем некоторые частицы двигались не по направлению к источнику света, а в обратном направлении. Этот эффект, названный фотофорезом, нельзя было объяснить действием только силы светового давления. Движение частиц в направлении распространения света было названо положительным фотофорезом, а движение в обратном направлении – отрицательным фотофорезом.
Объясняется указанный эффект следующим образом. Поглощение света частицей приводит к распределению электромагнитной энергии падающего оптического излучения по объему частицы. Внутри частицы возникают источники тепловой энергии с некоторой объемной плотностью, которые неоднородно нагревают частицу. Молекулы газа после соударения с поверхностью частицы отражаются от нагретой стороны частицы с большей скоростью, чем от холодной. В результате частица приобретает некомпенсированный импульс, направленный от горячей стороны частицы к холодной. В зависимости от размеров и оптических свойств материала частицы более горячей может оказаться как освещенная (положительный фотофорез), так и теневая сторона частицы (отрицательный фотофорез). Кроме того, если поток излучения неоднороден по сечению, то может возникнуть и поперечное (относительно направления распространения излучения) движение частицы в газе.
В последние годы интерес к фотофорезу резко возрос. Этому способствовало развитие лазерной техники. Первая публикация об оптической левитации при воздействии видимого лазерного луча относится к 1970 году. Далее были предложены многочисленные варианты практического применения эффекта: разделение частиц в жидкости, оптическая левитация частиц в воздухе (и в вакууме), захват и удержание частиц в лазерном луче и т. д.
Высокая монохроматичность лазерного излучения и возможность перестройки длины волны позволяют легко управлять движением макрочастиц. Распределение сил, воздействующих на частицу в слабо сходящемся лазерном луче показано на рис. 39.
Рис. 39. Компоненты сил, действующих на макрочастицу, в лазерном луче [26]
Рис. 39
К сожалению, говоря о компонентах сил, имеющих место в оптической левитации, подразумевают наноньютоны (nN) и даже их доли. Как следствие потенциальная область применения применения такого метода очевидно также имеет приставку «нано» – нанотехнологии.
Сверхпроводниковая магнитная левитация.
Магнитная левитация по данной технологии также известна как метод Мейснера. Эффект парения достигается путем размещения магнита над сверхпроводником. В его качестве применяется оксид иттрия-бария-меди. Данное вещество приобретает способность сверхпроводника при снижении его температуры. Для этого необходимо обеспечение его контакт с жидким азотом.
Рис 40
Рис. 40. Пример левитации в магнитном поле [28] по метолу Майснера над сверхпроводником
Эксперимент по левитации подразумевает помещение пластины в ванночку с жидким азотом. Оксид иттрия-бария-меди практически мгновенно охлаждается. Если над ним поместить магнит, то тот начнет левитировать. Высота между магнитом и сверхпроводником напрямую зависят от силы индукции. Чем она выше, тем на большем расстоянии окажется магнит. Предмет как бы всплывает над сверхпроводником и весьма устойчиво парит до момента, пока пластина не остынет, потеряв свои свойства.
Вихретоковая магнитная левитация
Еще одним способом создания магнитной левитации является использование вихревых токов и массивных проводников. Катушка, выдающая вихревой ток, может левитировать над замкнутым кольцом из цветного металла. Аналогичная ситуация наблюдается и с дисками из данного металла, уложенными над большими катушками.
Рис. 41
Рис. 41. Пример левитации в вихревых токах [28]
Это обусловлено тем, что по закону Ленца индексируемый в данном случае цветной металл будет создавать магнитное поле противоположное от того, что на него воздействует. Иными словами, в каждый период колебания переменного тока в катушке будет создаваться противоположное по направлению магнитное поле. Поскольку они отталкивают друг друга, то более легкий предмет будет левитировать над тяжелым.
Еще одним примером вихревой левитации является пропускание неодимового магнита через толстостенную медную трубу. В этом случае постоянное парение не происходит, но магнит замедляется. Его падение сквозь трубу напоминает замедленную съемку или погружение в густую жидкость.
Рис. 42
Рис. 42. Пример вихревой левитации в толстостенной медной трубе [28]
Аэродинамическая левитация
Аэродинамическая левитация в отличие от оптической левитации твердо стоит на ногах в области макро- и микротехнологий – технологий сегодняшнего дня. В одной из разновидностей этого метода вновь присутствует слово «подушка». Воздушную подушку получить очень просто. Достаточно в подложке-носителе просверлить много-много отверстий и продувать через них сжатый воздух. Подъемная сила воздуха уравновешивает вес изделия и последний начинает «парить» в воздухе. Недостатком этого метода является отсутствие центрирующего эффекта.
Ультразвуковая акустическая левитация малых объектов
Рассмотрим бесконтактное манипулирование малыми объектами с использованием акустических волн. В литературе известны два варианта: левитация в стоячей волне и левитация в ближнем поле. В стоячей волне небольшие объекты могут «зависать» в узлах давления между излучателем и рефлектором.
Рис. 43. Схема ультразвуковой акустической левитации [28]
Рис. 43
В ближнем поле рефлектор замещается самим левитирующим объектом. Силы, возникающие в акустической стоячей волне, способны удерживать в подвешенном состоянии в газовой атмосфере и в иных земных условиях объекты массой в несколько граммов. Схема ультразвуковой акустической левитации показана на рис. 43.
На этом рисунке показано распределение акустического давления, акустической скорости и аксиальной подъемной силы в стоячей волне. Чтобы генерировать стоячую волну излучатель размещается на фиксируемой дистанции от рефлектора, которая в идеале делится на половину длины волны. В условиях микрогравитации объекты (частицы) должны позиционироваться точно в узловых точках (точках с нулевым акустическим давлением). Чтобы удовлетворить требованиям уравнения Бернулли, акустическая скорость и акустическое давление смещены на 90 0. Поэтому узлам акустического давления отвечает максимальная акустическая скорость. В узле акустического давления сила левитации равна нулю. В земной атмосфере взвешенные частицы будут позиционироваться ниже узла акустического давления и стабилизироваться силами левитации, возникающими в антисимметричной части волны акустического давления. В зависимости от выбранного узла стабильная левитация может наблюдаться в аксиальном потоке поднимающимся вверх или опускающимся вниз.
Другой подход к использованию ультразвука заключается в левитации планарных объектов вблизи поверхности манипулятора, снабженного высокочастотным излучателем. Эта технология называется левитацией в ближнем поле. В ближнем поле высокочастотного ультразвукового излучателя объект поднимается благодаря непосредственному излучению снизу. Он сам выполняет функцию рефлектора.
Центрирующие силы в ближнем поле могут быть получены различными способами: могут быть установлены под углом излучатели или может изменяться сила левитации.
Планарные объекты левитируют над ультразвуковым излучателем на расстоянии половины длины стоячей волны. Типичный профиль сил левитации показан на рис. 44.
Рис. 44. Типичный профиль сил левитации в ближнем поле [28]
Рис. 44
Из этого графика следует, что сила левитации в ближнем поле обратно пропорциональна расстоянию. В интервалах, кратных половине длины волны, имеются дополнительные пики, где объект может быть «подвешен». Однако подъемная сила очень сильно уменьшается с увеличением расстояния.
Главное преимущество ультразвуковой акустической левитации заключается в полной независимости от вида материала (проводник или диэлектрик, магнитный или немагнитный и т.д.).
Сравнение различных методов технической левитации малых объектов
Таблица 2. Сравнение разных методов левитации [28]
Таблица 3. Сравнение различных методов технической левитации (продолжение)
Магнитный и электростатический методы левитации в ближайшем будущем скорее всего несколько уступят свои позиции, поскольку их сложно применять по отношению ко всем видам материалов. Кроме того, они обычно требуют наличия систем автоматического контроля и регулирования.
Оптическая левитация ограничивается очень маленькими и относительно прозрачными частицами в прозрачной окружающей среде. Ясно, что ограничения по характеру частиц и окружающей среде пока что делают неприемлемым ее использование по отношению к современным микросборокам. Этот метод позволяет генерировать усилия величиной 1 nN, которые слишком малы для того, чтобы манипулировать компонентами с размером более чем 100 m. Хотя, все течет, все изменяется. Развитие нанотехнологий идет непредсказуемо высокими темпами.
Остается выбор между между аэродинамической левитацией и ультразвуковой акустической левитацией. К такому выводу приходят авторы. Но, аэродинамическая левитация, к сожалению, «дарит» нам плохую поперечную стабильность и требует сложного исполнения, поскольку нуждается во внешнем источнике сжатого воздуха.
Ультразвуковая акустическая левитация пока еще не получила такого широкого практического использования, как метод, в основе которого лежит уравнение Бернулли. Левитация с использованием стоячей волны более предпочтительна для захвата, ориентации, позиционирования и отпускания небольших изделий различной формы. Левитация в ближнем поле больше подходит для управления движением и транспорта плоских изделий.
В итоге напрашивается другой вывод – нет в мире совершенства. Хотя, к совершенству можно все-таки немного приблизиться. Магистральное направление в области технической левитации скорее всего скрывается за словом «комбинаторика». В результате удачного объединения двух или более альтернативных систем, как правило, появляются новые технические решения, сочетающие достоинства и исключающие недостатки их составляющих. Об этом говорит история развития техники вообще, а не только в области микроэлектроники. Реальный пример такого сочетания приведен и в этой статье – бесконтактный транспорт пластин с одновременным использованием ультразвуковой и аэродинамической левитации.
Рис. 45
Рис. 45. Диамагнитная левитация [17]
На примере, одного из самых известных своим диамагнетизмом материала, рассмотрим диамагнитную левитацию. Перед нами, так называемая диамагнитная ловушка, на основе двух конусовидных кристаллов висмута. В диамагнетиках возникает слабое магнитное поле, когда они помещены в среду внешнего магнитного поля. Маленький, квадратный неодимовый магнит левитирует, потому что снизу и сверху навстречу его собственному магнитному полю, действуют, образовавшиеся в ответ магнитные поля конусов.