Читать книгу Первый мировой карантин. Краткая история пандемии 2020 года - Алла Токарчук - Страница 8

Как человечество готовилось к возможной пандемии
Вирусы, векторы, открытие генома, коррекции генов

Оглавление

Вирусы – это агенты, заражающие клетки. Вирусы присутствуют почти в каждой экосистеме. Вопросы относительно вирусного происхождения и ранней эволюции всех живых организмов (бактерий, архей и эукариев) по-прежнему широко открыты, и соответствующие теории остаются спорными. Поскольку вирусы весьма разнообразны и претерпевают быстрые изменения, невозможно построить родословное древо для мира вирусов. Вместо этого семейства вирусов классифицируются в зависимости от природы их генетического материала, способа репликации, патогенности и структурных свойств.

В настоящее время вирусный мир представлен более 8 тысячами референсных геномов. Международный комитет по таксономии вирусов (ICTV) предлагает универсальную таксономическую классификацию вирусов, которая охватывает ~ 150 семейств и ~ 850 родов, при этом многие вирусы еще не классифицированы. Эта коллекция представляет собой исчерпывающий компактный набор представителей вирусов29.

Метагеномный анализ показал, что вирусные сообщества в окружающей среде невероятно разнообразны. По некоторым оценкам, существует около 5000 вирусных генотипов в 200 литрах морской воды и, возможно, миллион различных вирусных генотипов в одном килограмме морских отложений. Напротив, некоторые исследования в области культивирования и молекулярные исследования показали, что вирусы перемещаются между разными биомами. Вместе эти результаты предполагают, что вирусное разнообразие может быть высоким в локальном масштабе, но относительно ограниченным в глобальном масштабе.

Вирусы – повсеместные спутники клеточных форм жизни: похоже, что каждый изученный клеточный организм имеет свои собственные вирусы или, по крайней мере, вирусоподобные эгоистичные генетические элементы. Вирусы активно перемещаются между биомами и считаются основными агентами эволюции в силу своей способности действовать как носители горизонтального переноса генов (HGT)30.

Вирусы могут быть эндогенными или экзогенными. Эндогенизация ретровирусов началась в геномах млекопитающих как минимум 550 млн лет назад и продолжается до настоящего времени.

Коалы в Австралии в настоящее время подвергаются эндогенизации ретровирусом (ретровирус коалы, KoRV) в «реальном времени» и демонстрируют возможные последствия для иммунитета. В начале 1900-х годов некоторые особи были переселены на острова, в том числе на остров Кенгуру, расположенный недалеко от материковой части Австралии, в целях восстановления популяции, поскольку коалам угрожало вымирание. Сегодня бóльшая часть популяции коал инфицирована ретровирусом коалы KoRV, который тесно связан с вирусом лейкемии гиббоновых обезьян (GaLV). Тем не менее, у коал, изолированных на острове Кенгуру, отрицательный показатель KoRV, это позволяет предположить, что KoRV появился в популяции коал примерно сто лет назад. Многие зараженные коалы заболели и умерли, но некоторые популяции выработали устойчивость на протяжении около 100 лет, что соответствует примерно 10 поколениям.

Коалы, вероятно, приобрели устойчивость из-за интегрированных провирусов ДНК. Ретровирус передается как экзогенный, так и как эндогенный вирус, при этом эндогенизированные вирусы защищают продукт вирусного гена от инфекций de novo с помощью «исключения суперинфекции».

Вирусы защищают от вирусов: ретровирусы защищают клетку от новой инфекции аналогичным вирусом, обозначенным как «исключение суперинфекции» или вирусное вмешательство. Это опосредуется продуктами вирусных генов, такими как белки или нуклеиновые кислоты. Точно так же бактериофаги защищают от бактериофагов: суперинфекцию бактерий предотвращает CRISPR/Cas РНК, которая, в свою очередь, происходит от предыдущих инфекций. Механизмы защиты от вирусов и бактериофагов аналогичны. Защита вирусов или бактериофагов от суперинфекций представляет собой клеточную защиту и приобретенный иммунитет.

Лишь небольшая часть вирусов являются патогенами; большинство из них не вызывают заболеваний. Напротив, они наиболее важны как движущие силы эволюции, как передатчики генетического материала, как инновационные агенты. В частности, наиболее инновационными являются РНК-вирусы. Некоторые из них патогенные и опасные, например, ВИЧ или вирус гриппа, либо вироиды в растениях. РНК-вирусы способны меняться настолько быстро, что иммунная система хозяина неспособна противодействовать инфекции. Патогенность возникает при изменении условий окружающей среды, например, когда вирус попадает в новый организм или вид31.

Аденовирусы (Ad) были впервые обнаружены в 1953 году, их выделили из культур аденоидных тканей человека. С тех пор было выделено и охарактеризовано более 50 различных серотипов аденовирусов человека, и было показано, что семейство Adenoviridae состоит из множества нечеловеческих серотипов различных видов млекопитающих, птиц, рептилий, амфибий и даже рыб.

Аденовирусы были одной из первых разработанных векторных систем. Использование аденовирусов для экспрессии чужеродных генов (трансгенов) было скорее открытием, чем преднамеренной разработкой. Со времени этого первого открытия разработка аденовирусных векторов существенно продвинулась. Большая часть ранних разработок была сосредоточена на «векторизации», полученной из серотипа 5 (Ad5) и серотипа 2 (Ad2) человека.32 Ad-векторы широко используются в клинической генной терапии. Около половины, возможно, даже две трети последовательности человеческого генома состоят из более или менее полных эндогенных ретровирусов и связанных ретроэлементов.

Одной из самых потрясающих работ этого столетия стала публикация последовательности генома человека33. Проект человеческого генома включал сначала картирование, а затем секвенирование генома человека. Первое было необходимо в то время, потому что в противном случае отсутствовала «основа» для организации фактического секвенирования или полученных данных последовательности. Карты генома человека служили «каркасом» для соединения отдельных сегментов собранной последовательности ДНК. Эти усилия по картированию генома были довольно дорогими, но в то время они были необходимы для создания точной последовательности генома. Трудно оценить размер затрат, связанных с «этапом картирования генома человека», но они определенно исчислялись многими десятками миллионов долларов (и, вероятно, даже сотнями миллионов долларов).

После начала значительного секвенирования генома человека в течение 15-месячного периода (с апреля 1999 года по июнь 2000 года) производили «черновую» последовательность генома человека34.

Быстрое развитие технологий редактирования генов, произошедшее за последнее десятилетие, уже обеспечивает значительные успехи в улучшении здоровья человека. Редакторы генов используются в текущих клинических испытаниях для лечения различных заболеваний человека, включая ВИЧ, рак и заболевания крови. По мере развития инструментов редактирования генов, вероятно, появятся новые методы лечения дополнительных заболеваний. В частности, инструменты редактирования генов на основе CRISPR быстро развиваются и используются для создания различных модификаций в клетках млекопитающих, включая целевое редактирование конкретных последовательностей ДНК, активацию или репрессию представляющих интерес генов и эпигенетическое перепрограммирование клеточных идентичностей. Однако несмотря на потенциальные преимущества использования технологий редактирования генов для терапии человека необходимо лучше понять фундаментальную биологию, лежащую в основе этих технологий, чтобы обеспечить пациентам безопасные и эффективные варианты лечения. Многие инструменты CRISPR были протестированы только in vitro, и нерешенным остается вопрос об эффективности и безопасности при их использовании in vivo. Это, вероятно, будет включать сложное взаимодействие между молекулярной функцией данного инструмента в сочетании со способом доставки. Некоторые компоненты CRISPR обладают иммуногенностью у определенных людей – как мы можем разработать эти потенциальные методы лечения, чтобы минимизировать риск возникновения контрпродуктивного иммунного ответа? Инструменты редактирования генов CRISPR часто демонстрируют широко распространенные побочные эффекты, которые могут оказаться опасными, если эти методы лечения необходимы в жизненно важных органах или оказываются там непреднамеренно – как мы можем максимизировать доставку к целевым участкам тела и минимизировать накопление в нецелевых участках? Все эти вопросы в настоящее время изучаются исследовательскими группами по всему миру, а подвижки в этих областях будут иметь решающее значение для успеха методов лечения с помощью редактирования генов.

Этические проблемы также возникают в результате этой недавней волны новых инструментов редактирования генов. Этично ли редактировать развивающийся человеческий эмбрион? Кто должен принимать эти решения и кто будет их регулировать? Потребуются глобальные дискуссии, объединяющие науку и политику, чтобы управлять использованием CRISPR и редактирования генов при развитии младенцев. Более того, здоровье и болезнь часто представляют собой спектр, а не два состояния, и решения должны приниматься на основе известных или вероятных компромиссов. Редактирование генов сопряжено со значительными рисками, так что баланс между приемлемым риском и значительной выгодой следует находить в каждом случае потенциального использования. Этот баланс будет меняться по мере развития технологий, изменяя профиль риска/пользы для данной терапии.

Наконец, по мере появления новых технологий всегда существует вероятность того, что они будут случайно или умышленно использоваться неправильно. Текущая работа по выявлению и разработке анти-CRISPR, таких как та, которая входит в программу DARPA Safe Genes, уже показывает путь к разработке контрмер, которые подавляют или отменяют нежелательное редактирование генов. Технологии редактирования генов чрезвычайно мощны и обладают огромным потенциалом, они открывают новые возможности для лечения множества человеческих болезней. Поскольку количество ресурсов, выделяемых на то, чтобы добиться лучшего понимания и описания этих технологий, продолжает резко увеличиваться с каждым годом, их полноценное клиническое внедрение кажется очень близким к тому, чтобы стать реальностью35.


ВЫВОДЫ


Вирусы появились раньше человека, их история насчитывает более 550 млн лет. После расшифровки человеческого генома удалось расшифровать также множество вирусов. Благодаря методам генной инженерии аденовирусы человека превратили в носителей различных белков и цепочек аминокислот, используемых для лечения многих заболеваний. Эти носители получили название векторы. На векторах сейчас разрабатывают и вакцины против COVID-19.

29

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563228/ Brandes N, Linial M. Giant Viruses-Big Surprises. Viruses. 2019;11 (5):404. Published 2019 Apr 30. doi:10.3390/v11050404

30

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1594570/ Koonin EV, Senkevich TG, Dolja VV. The ancient Virus World and evolution of cells. Biol Direct. 2006;1:29. Published 2006 Sep 19. doi:10.1186/1745-6150-1-29

31

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433886/ Moelling K, Broecker F. Viruses and Evolution – Viruses First? A Personal Perspective. Front Microbiol. 2019;10:523. Published 2019 Mar 19. doi:10.3389/fmicb.2019.00523

33

https://deepblue.lib.umich.edu/bitstream/handle/2027.42/62798/409860a0.pdf?sequence=1&isAllowed=y

34

https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost

35

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146048/ Hirakawa MP, Krishnakumar R, Timlin JA, Carney JP, Butler KS. Gene editing and CRISPR in the clinic: current and future perspectives. Biosci Rep. 2020;40 (4):BSR20200127. doi:10.1042/BSR20200127

Первый мировой карантин. Краткая история пандемии 2020 года

Подняться наверх