Читать книгу Introduction To Modern Planar Transmission Lines - Anand K. Verma - Страница 43

Journals

Оглавление

1 J.1 Elliott, R.S.: The history of electromagnetics as Hertz would have known it, IEEE Antennas Propag. Soc. Newsl., Vol. 30, No. 3, pp. 5–18, June 1988

2 J.2 Grattan‐Guinness, I.: Why did George Green write his essay of 1828 on electricity and magnetism?, Am. Math.Mon., Vol. 102, No. 5, pp. 387–397, DOI: 10.1080/00029890.1995.12004591http://about.jstor.org/terms.

3 J.3 Wu, A.C.T.; Yang, C.N.: Evolution of the concept of the vector potential in the description of potential interactions, Int. J. Mod. Phys. A, Vol. 21, No. 16, pp. 3235–3277, 2006.

4 J.4 Eliseo Fernández, E.: Concepts and instruments: the potential from Green to Kelvin, The Midwest Junto for the History of Science, March 25–27, 1994.

5 J.5 Challis, L.; Sheard, F.: The green of Green’s function, Phys. Today, Vol. 56, No. 12, pp. 41–46, 2003.

6 J.6 John Roche, R.: The present status of Maxwell’s displacement current, Eur. J. Phys., Vol. 19, pp. 155–16n, 1998.

7 J.7 French, A.P.; Tessman, J.R.: Displacement currents and magnetic fields, Am. J. Phys., Vol. 31, pp. 201–204, 1963.

8 J.8 Scheler, G.; Paulus, G.G.: Measurement of Maxwell’s displacement current, Eur. J. Phys., Vol. 36, No. 055048, pp. 1–9, 2015.

9 J.9 Selvan, K.T.: Presentation of Maxwell's equations in historical perspective and the likely desirable outcomes, IEEE Antennas Propag. Mag., Vol. 49, No. 5, pp. 155–160, Oct. 2007.

10 J.10 Selvan, K.T.: A revisiting of scientific and philosophical perspectives on Maxwell's displacement current, IEEE Antennas Propag. Mag., Vol. 51, No.3, pp. 36–46, June 2009.

11 J.11 Essex, E.A.: Hertz vector potentials of electromagnetic theory, Am. J. Phys., Vol. 45, pp. 1099–1101, 1977.

12 J.12 Kraus, J.D.: Heinrich Hertz‐theorist and experimenter, IEEE Trans. Microwave Theory Tech., Vol. 36, No. 5, pp. 824–829, May 1988.

13 J.13 Susskind, C.: Heinrich Hertz: A short life, IEEE Trans. Microwave Theory Tech., Vol. 36, No. 5, pp. 802–805, May 1988.

14 J.14 Bladel, J.V.: Lorenz or Lorentz?, IEEE Antennas Propag. Mag., Vol. 33, No. 2, pp. 69, April 1991.

15 J.15 Jackson, J.D.; Okun, L.B.: Historical roots of gauge invariance, Rev. Mod. Phys., Vol. 73, pp. 663–680, July 2001.

16 J.16 Griffiths, D.J.: Resource letter EM‐1: Electromagnetic momentum, Am. J. Phys., Vol. 80, No. 1, pp. 7–18, Jan. 2012.

17 J.17 Aharonov, Y.; Bohm, D.: Significance of electromagnetic potentials in quantum theory, Phys. Rev., Vol. 115, pp. 485–491, 1959.

18 J.18 Thomson, W. (Kelvin): On the theory of the electric telegraph, Proc. R. Soc. London, Vol. 4, No. 11, pp. 382–399, May 1855.

19 J.19 Searle, G.F.C., et al. The Heaviside Centenary Volume, The Institution of Electrical Engineers, London, 1950.

20 J.20 Whittaker, E.T.: Oliver Heaviside, In Electromagnetic Theory Vol. 1, Oliver Heaviside, Reprint, Chelsea Publishing Company, New York, 1971.

21 J.21 Pupin, M.I.: Wave propagation over non‐uniform cables and long‐distance airlines, Trans. Am. Inst. Electr. Eng., Vol. 17, pp. 445–507, (discussion on pp. 508–512), May 1900.

22 J.22 Pupin, M.I.: Propagation of long electrical waves, Trans. Am. Inst. Electr. Eng., Vol. xv, No. 144, pp. 93–142, March 1899.

23 J.23 Campbell, G.A.: On loaded lines in telephonic transmission, London, Edinburg Dublin Philos. Mag. J. Sci., Vol. 5, No. 27, pp. 313–330, 1903.

24 J.24 Kennelly, A.E.: Impedance, 76th Meeting of American Institute of Electrical Engineers, pp. 175–232, April 1893.

25 J.25 Carson, J.R.: Wave propagation over parallel wires: The proximity effect, London, Edinburgh Dublin Philos. Mag. J. Sci., Vol. 41, No. 244, pp. 607–633, 1921

26 J.26 Carson, J.R.: Electromagnetic theory and the foundations of electrical circuit theory, Bell Syst. Tech. J., Vol. 6, pp. 1–17, Jan. 1927.

27 J.27 Levin, A.: Electromagnetic waves guided by parallel wires with particular reference to the effect of the earth, Trans. Am. Inst. Electr. Eng., Vol. 46, pp. 983–989, June 1927.

28 J.28 Bewley, L.V.: Traveling waves on transmission systems, Trans. Am. Inst. Electr. Eng., Vol. 50, No. 2, pp. 532–550, June 1931.

29 J.29 Pipes, L.A.: Matrix theory of multiconductor transmission lines, London, Edinburgh Dublin Philos. Mag. J. Sci., Vol. 24, No. 159, pp. 97–113, July 1937.

30 J.30 Rayleigh, J.W.S.: On the passage of electric waves through tubes, or vibrations of dielectric cylinders, Philos. Mag., Vol. 43, pp. 125–132, Feb. 1897.

31 J.31 Southworth, G.C.: Hyper – frequency waveguides – General consideration and experimental results, Bell Sys. Tech. J., Vol. 15, pp. 284–309, 1936.

32 J.32 Barrow, W.L.: Transmission of electromagnetic waves in hollow tubes of metal, Proc. IRE, Vol. 24, pp. 1298–1328, Oct. 1936.

33 J.33 Brillouin, L.: Propagation of electromagnetic waves in a tube, Rev. GMn. de l'Elec., Vol. 40, pp. 227–239, Aug. 1936.

34 J.34 Carson, J.R.; Mead, S.P.; Schelkunoff, S.A.: Hyper‐frequency wave guides – mathematical theory, Bell Sys. Tech. J., Vol. 15, pp. 310–333, 1936.

35 J.35 Chu, L.I.; Barrow, W.L.: Electromagnetic waves in hollow metal tubes of rectangular cross‐ section, Proc. IRE, Vol. 26, 1520, 1938.

36 J.36 Schelkunoff, S.A.: The electromagnetic theory of coaxial transmission lines and cylindrical shields, Bell Sys. Tech. J., Vol. 13, No. 4, pp. 532–579, Oct. 1934.

37 J.37 Schelkunoff, S.A.: Transmission theory of plane electromagnetic waves, Proc. IRE, Vol. 25, p. 1437, 1937.

38 J.38 Schelkunoff, S.A.: Generalized telegraphist's equations for waveguides, Bell Sys. Tech. J., Vol. 31, No. 4, pp. 784–801, July 1952.

39 J.39 Schelkunoff, S.A.: Conversion of Maxwell's equations into generalized telegraphist's equations, Bell Sys. Tech. J., Vol. 34, No. 5, pp. 995–1043, Sept. 1955.

40 J.40 Niehenke, E.C.; Pucel, R.A.; Bahl, I.J.: Microwave and millimeter‐wave integrated circuits, IEEE Trans. Microwave Theory Tech., Vol. 50, No. 3, pp. 846–857, March 2002.

41 J.41 Greig D.D.; Engelmann, H.: Microstrips – A new transmission technique for the kilomegacycle range, Proc. IRE, Vol. 40, pp. 1644–1650, Dec. 1952.

42 J.42 Barrett, R.M.: Microwave printed circuits‐A historical survey, IEEE Trans. Microwave Theory Tech., Vol. 3, No. 2, pp. 1–9, Mar. 1955.

43 J.43 Barrett, R.M.: Microwave printed circuits ‐ The early years, IEEE Trans. Microwave Theory Tech., Vol. MTT‐32, No. 9, pp. 983–990, Sept. 1984.

44 J.44 Cohn, S.B.: Characteristic impedance of the shielded‐strip transmission line, IRE Trans. Microwave Theory Tech., Vol. MTT‐2, pp. 52–57, July 1954.

45 J.45 McQuiddy, D.N.; Wassel, J.W.; LaGrange, J.B.; Wisseman, W.R.: Monolithic microwave integrated circuits: An historical perspective, IEEE Trans. Microwave Theory Tech., Vol. 32, No. 9, pp. 997–1008, 1984.

46 J.46 Petersen, K.E.: Micro‐mechanical membrane switches on Silicon, IBM J. Res. Dev., Vol. 23, No. 4, pp. 376–385, July 1979.

47 J.47 Yao, J.; Chang, M.F.: A surface micro‐machined miniature switch for telecommunication application with single freq. from DC up to 4 GHz, Proc. Transducer’95, pp. 384–387, June 1995.

48 J.48 Goldsmith, C.; Lin, T.H.; Powers, B.; Wu, W.R.; Norvel1, B.: Micro‐mechanical membrane switches for microwave application, IEEE Microwave Theory Tech. Symp., MTT‐S Digest, pp. 91–94, May 1995.

49 J.49 Rodriguez, A.R.; Wallace, A.B.: Ceramic capacitor and method of making it, Patent US 3004197, issued 10/10/1961.

50 J.50 Hajian, A.; Müftüoglu, D.; Konegger, T.; Schneider, M.; Schmid, U.: On the porosification of LTCC substrates with sodium hydroxide, Compos. Part B: Eng., Vol. 157, pp. 14–23, 2019.

51 J.51 Veselago, V.: The electrodynamics of substances with simultaneously negative values of ε and μ, Soviet Physics Uspekhi, Vol. 10, No. 4, pp. 509–514, Jan., Feb. 1968.

52 J.52 Pendry, J.B.; Holden, A.J.; Stewart, W.J.; Youngs, I.: Extremely low‐frequency plasmons in metallic mesostructures, Phys. Rev. Lett., Vol. 76, No. 25, pp. 4773–4776, June 1996.

53 J.53 Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, pp. 2075–2084, Nov. 1999.

54 J.54 Shelby, R.A.; Smith, D.R.; Schultz, S.: Experimental verification of a negative index of refraction, Science, Vol. 292, No. 5514, pp. 77–79, April 2001.

55 J.55 Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat‐Nasser, S.C.; Schultz, S.: Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett., Vol. 84, No. 18, pp. 4184–4187, May 2000.

56 J.56 Assaudourion, F.; Rimai, E.: Simplified theory of microstrip transmission systems, Proc. IRE, Vol. 40, pp. 1651–1657, Dec. 1952.

57 J.57 Cohn, S.B.: Characteristic impedance of the shielded‐strip transmission line, IRE Trans. Microwave Theory Tech., Vol. MTT‐2, pp. 52–57, July 1954.

58 J.58 Cohn, S.B.: Problems in strip transmission lines, IEEE Trans. Microwave Theory Tech., Vol. MTT‐3, No. 2, pp. 119–126, March 1955.

59 J.59 Cohn, S.B.: Shielded coupled‐strip transmission line, IRE Trans. Microwave Theory Tech., Vol. MTT‐3, pp. 29–38, Oct. 1955.

60 J.60 Cohn, S.B.: Characteristic impedances of broadside‐coupled strip transmission lines, IRE Trans. Microwave Theory Tech., Vol. MTT‐8, pp. 633–637, Nov. 1960.

61 J.61 Wheeler, H.A.: Transmission‐line properties of parallel wide strips by a conformal‐mapping approximation, IEEE Trans. Microwave Theory Tech., Vol. MTT‐12, pp. 280–289, May 1964.

62 J.62 Wheeler, H.A.: Transmission‐line properties of parallel strips separated by a dielectric sheet, IEEE Trans. Microwave Theory Tech., Vol. MTT‐13, pp. 172–185, March 1965.

63 J.63 Wheeler, H.A.: Transmission‐line properties of a strip on a dielectric sheet on a plane, IEEE Trans. Microwave Theory Tech., Vol. MTT‐25, pp. 631–647, Aug. 1977.

64 J.64 Wheeler, H.A.: Transmission line properties of a stripline between parallel planes, IEEE Trans. Microwave Theory Tech., Vol. MTT‐26, pp. 866–876, Nov. 1978.

65 J.65 Cohn, S.B.: Slotline on a dielectric substrate, IEEE Trans. Microwave Theory Tech., Vol. MTT‐17, pp. 768–778, Oct. 1969.

66 J.66 Wen, C.P.: Coplanar waveguide: a surface strip transmission line suitable for nonreciprocal gyromagnetic device application, IEEE Trans. Microwave Theory Tech., Vol. MTT‐17, pp. 1087–1090, Dec. 1969.

67 J.67 Meier, P.J.: Two new integrated‐circuit media with special advantages at millimeter‐wave lengths, IEEE MTT‐S Int. Microwave Symp. Dig., pp. 221–223, 1972.

68 J.68 Yamashita, E.; Mitra, R.: Variational method for analysis of microstrip lines, IEEE Trans. Microwave Theory Tech., Vol. MTT‐16, No. 4, pp. 251–256, April 1968.

69 J.69 Yamashita, E.: Variational method for analysis of microstrip – like transmission lines, IEEE Trans. Microwave Theory Tech., Vol. MTT‐16, No. 8, pp. 529–535, Aug. 1968.

70 J.70 Itoh, T.; Herbert, A.S.: A generalized spectral domain analysis for coupled suspended microstrip lines with tuning septum, IEEE Trans. Microwave Theory Tech., Vol. MTT‐26, No. 10, pp. 820–826, Oct. 1978.

71 J.71 Itoh, T.: A generalized spectral domain analysis for multiconductor printed lines and its application to tunable suspended microstrips, IEEE Trans. Microwave Theory Tech., Vol. MTT‐26, No. 12, pp. 983–987, Dec. 1978.

72 J.72 Itoh, T.; Mittra, R.: Spectral‐domain approach for calculating the dispersion characteristics of microstrip lines, IEEE Trans. Microwave Theory Tech., Vol. MTT‐21, pp. 496–499, July 1973.

73 J.73 Itoh, T.; Mittra, R.: Dispersion characteristics of slot lines, Electron. Lett., Vol. 7, pp. 364–365, 1971.

74 J.74 Itoh, T.: Spectral‐domain immittance approach for dispersion characteristics of generalized printed transmission lines, IEEE Trans. Microwave Theory Tech., Vol. MTT‐28, pp. 733–736, 1980.

75 J.75 Jansen, R.H.: High‐speed computation of single and coupled microstrip parameters including dispersion, high‐order modes, loss and finite strip thickness, IEEE Trans. Microwave Theory Tech., Vol. MTT‐26, pp. 75–82, 1978.

Introduction To Modern Planar Transmission Lines

Подняться наверх