Читать книгу Рассуждения об основах математики - Анатолий Николаевич Овчинников - Страница 4
Основная часть
3. Особенности описания математическим аппаратом реальной картины мира
ОглавлениеКак известно, математический аппарат устроен так, чтобы он обладал внутренней непротиворечивостью. Ни одно определение или формула никогда не противоречит ни одному другому определению или формуле, внутри самой математической системы. Это очень важное и полезное свойство математики. Но эта внутренняя непротиворечивость ещё не гарантирует внешней непротиворечивости по отношению к внешнему миру. Математический аппарат одинаково безупречно может описывать как то, что происходит в реальном мире, так и то, что в нем никогда не происходит. И эту особенность математического аппарата нужно обязательно учитывать. Отбор математических описаний (того, что происходит в реальном мире) делается уже не при помощи математических знаний, а экспериментально (смотри здесь предыдущий пункт). Ниже мы приводим несколько примеров того, к чему приводит пренебрежение указанной здесь особенностью математического аппарата.
Пример 1. Прямолинейное равноускоренное движение. Пусть s – путь, проходимый точкой; a – ускорение точки; t – время движения точки. Из формулы
находим
Но мы, однако, принимаем во внимание только решение с плюсом:
Но почему? Ведь отрицательное решение вовсе не противоречит математическому аппарату. Мы отбрасываем решение с минусом потому, что здесь мы пока ещё помним о том, что математический аппарат может одинаково безупречно описывать как то, что происходит, так и то, что не происходит в реальном мире. Не существует экспериментов, где время движения точки оказалось бы отрицательным.
Пример 2. Дифференциальные уравнения. Как известно, любое дифференциальное уравнение дает бесконечное множество решений. И только некоторые из этих решений описывают то, что происходит на самом деле. Подавляющая часть этих решений не имеет никакого отношения к описанию реального положения дел. Почему нас это не удивляет? Да потому, что и здесь мы пока ещё помним, что математический аппарат безупречно может описывать как то, что происходит, так и то, что не происходит. Чтобы решение описывало то, что происходит, нужно задать «правильные», реально существующие начальные и граничные условия, а это дело можно поручить только физику. Почему? Потому, что только физик имеет дело с первоначальными, реальными измерениями физических величин, и уж он-то знает, каковы эти величины бывают на самом деле. Если, например, поручить это дело математику, то он может задать «несбыточные» начальные и граничные условия. А потому и решение дифференциального уравнения будет описывать «несбыточные» процессы. Но очень часто даже физик имеет весьма туманное представление о начальных и граничных условиях, а тогда, дифференциальное уравнение становится совершенно бесполезной вещью.
Пример 3. Производная координаты по времени и дифференциал времени. Пусть s – путь, проходимый точкой; t – время движения; v – скорость точки. Производная пути по времени (скорость) в математическом анализе выражается формулой
.
Но что означает символ
В математическом анализе это означает, что Δt стремится к нулю и слева (оставаясь меньше нуля) и справа, оставаясь больше нуля. Производная существует, если в обоих этих случаях предел один и тот же:
.
Математический аппарат обязательно требует, чтобы Δt в формуле могло быть как меньше нуля, так и больше нуля. В противном случае определение производной будет противоречиво (если пределы слева и справа – различны, то производная в данной точке не существует). А что говорят реальные опыты (эксперименты)? В реальных опытах Δt никогда не бывает меньше нуля. Время – специфическая физическая величина, её измерение связано с подсчетом числа произошедших событий (периодов часов). Ситуация когда
не имеет места, ни в каких опытах, и поэтому
не существует в природе, но существует в математическом анализе.
Таким образом, когда физик смотрит, например, на уравнение
,
то он отчетливо должен понимать, что в эту одну формулу математический аппарат совершенно безупречно вложил два решения:
1-ое, когда
и оно (и только оно) реализуется в опытах.
2-ое, когда
и оно никогда не реализуется в опытах.
Аналогичная ситуация возникает, когда мы говорим о числе произошедших событий N и их приращении ΔN. В реальности ни dt, ни dN никогда не бывают математическими дифференциалами (назовем их «полудифференциалами»). Но математик-то обязан их объявить дифференциалами потому, что этого требует непротиворечивость математического аппарата.
Таким образом, если некто смотрит на формулу
и забывает о сказанном выше, у него возникают мысли о возможности создания машины времени
Именно математический аппарат провоцирует человека (очарованного этим аппаратом) на создание машины времени. И наоборот, никакие реальные опыты не дают нам оснований говорить об обратном течении времени. В вопросе о машине времени математический аппарат сыграл «злую шутку» с естествоиспытателем. Ниже мы увидим, что такие «шутки» математический аппарат проделывает постоянно.
Пример 4. Четырехмерное пространство-время. Теория относительности имеет математически компактное изложение при введении четырехмерного пространства-времени. И это изложение будет математически безупречно. Но какое отношение все это имеет к реальному пространству? Никакого. Реальное пространство – трехмерно, а не четырехмерно, и это – экспериментальный факт. В реальном пространстве нет места для четвертой оси Эйнштейна ict (размерность которой есть длина, такая же, как и остальных осей). Геометр материалист скажет: «Господа, вы утверждаете, что существует четырехмерное пространство-время. Тогда извольте построить, упомянутые вами четыре оси в реальном пространстве. Правила построения обоснуйте и сообщите эти правила нам». Ясно, что из этого ничего не выйдет. Но почему мы забываем об этом экспериментальном факте, и всякий раз возвращаемся к воображаемому четырехмерному пространству-времени? Потому, что здесь мы как раз и забываем о том, что математический аппарат одинаково безупречно описывает как то, что происходит, так и то, что не происходит. А в теории относительности математический аппарат как раз и описывает то, что не происходит. Ни одна точка реального пространства не принадлежит воображаемому четырехмерному пространству-времени. Это различные непересекающиеся множества.
Пример 5. Неевклидовы геометрии. Нам известно несколько геометрий. Однако адекватно положение дел в реальном пространстве описывает, лишь евклидова геометрия. Чтобы убедиться в этом, достаточно применить к любой геометрии аксиому существования геометрических объектов (более подробно см. в пятой главе [1]). Почему, однако, мы не оставляем попыток применять неевклидовы геометрии к описанию процессов в реальном пространстве? Потому, что и здесь мы как раз забываем о том, что математический аппарат одинаково безупречно описывает как то, что происходит, так и то, что не происходит. Фактически неевклидовы геометрии описывают безупречно то, что происходит лишь в воображаемых пространствах, а не то, что происходит в реальном пространстве.