Читать книгу Пушистые логарифмы - Андрей Анатольевич Сафонов - Страница 13
Узоры хаоса
Фрактал «буржуйский сыр» и проколы в матрице
ОглавлениеОднажды, наблюдая с сыном за поведением капель растительного масла в воде, я вновь пережил вспышку «теории», в пифагорейском смысле этого слова. В этот раз круги не давили друг на друга, как при кипении воды или в пчелиных сотах. Метаморфоза как будто свернула на соседнюю тропинку, и вместо привычных шестиугольников я увидел что-то вроде проколов в матрице.
Представим себе, что нам нужно замостить плоскость круглой плиткой сколь угодно малых размеров. Заполнить пространство как в случае с квадратами или шестиугольниками не получится: между окружностями всегда будут оставаться пробелы. Попытаемся заполнить их плиткой меньшего радиуса (именно так ведут себя пузыри, возникающие между пузырями). Очевидно, что пробелы не уйдут ни в этот раз, ни в следующий… Какие бы маленькие круги мы ни брали, всегда будет оставаться зазор, поэтому процесс можно потенциально продолжать до бесконечности.
Подобные структуры можно увидеть на поверхности свежесваренного кофе, в луже и везде, где давка не превращает их в многоугольники (хотя возможен и симбиоз, как в банке с мыльными пузырями).
Понятно, что в каждом случае процесс заполнения в какой-то момент заканчивается. Но то, что потенциально в природе, – актуально в математике, и чисто логически никто не мешает рассмотреть предельный случай, когда все пробелы заполнены бесконечностью уменьшающихся кругов. Данному математическому монстру я дал название «буржуйский сыр», что вполне характеризует экономические возможности данного принципа.
Технология «буржуйского сыра» позволяет получать видимость объема при сколь угодно малой плотности. Примеры тому пористый шоколад, воздушная кукуруза и даже современный хлеб. Конечно, идеал капиталиста – заданный объем при нулевой плотности – существует только в мире чистой математики. Интересна и «суперпористость» подобных материалов, они как бы бесконечно дышащие. Примечательно, что Декарт примерно так представлял структуру материи.
Впоследствии узнал, что данный объект называется сеткой Аполлония (он же «упаковка Лейбница») и обладает рядом труднопроизносимых математических свойств.
В этом всем удивительно то, что нерешаемая задача о заполнении плоскости кругами, естественным образом возникающая в природе, будто указывает на идеальный объект, которого в природе никогда не найти, но при этом он познаваем логически и является как бы недостижимой целью подобных процессов.
«Буржуйский сыр Аполлония» – хорошая иллюстрация того, что мир математики (а следовательно, и человеческий разум) в некотором смысле трансцендентен природе: он способен проникнуть туда, куда не проникнет ни один из компьютеров ни за какое число шагов. А это, в свою очередь, указывает на неполноту доступного глазу и микроскопу. На пробелы «в матрице», без которых в заколоченном наглухо физическом континууме было бы душновато.