Читать книгу Análisis y control del rendimiento deportivo - Atko Viru - Страница 8
ОглавлениеCréditos
Figura 3.2. Reproducida con permiso de H. Itoh, Y. Yamazaki e Y. Sato, 1995, «Salivary and blood lactate after supramaximal exercise in sprinters and long-distance runners». Scandinavian Journal of Medicine and Sciencies of Sports» 5: 285-290.
Figura 3.5. Reproducida con permiso de A. Viru, 1987, «Mobilization of structural proteins during exercise», Sports Medicine 4: 95-128.
Figura 3.6. Adaptada con permiso de A. Viru, 1987, «Mobilization of structural proteins during exercise», Sports Medicine 4: 95-128.
Figura 3.7, 3.8. Reproducidas con permiso de A. Viru et al., 1995, «Variability in blood glucose change during a 2-hour exercise», Sports Medicine, Training and Rehabilitation 6: 127-137.
Figura 4.5. Reproducida con permiso de K. Toode et al., 1993, «Growth hormone action on blood glucose, lipids and insulin during exercise», Biology of Sport 10 (2): 99-106.
Figura 4.6, 5.2, 5.5. Reproducidas con permiso de A. Viru, K. Karelson y T. Smirnova, 1992, «Stability and variability in hormone responses to prolonged exercise», International Journal of Sports Medicine 13: 230-235. Georg Thieme Verlag.
Figura 4.7 Reproducida con permiso de A. Viru et al., 1990, «Changes of β endorphin level in blood during exercise», Endocrinologica Experimentalis 24: 63-68.
Figura 5.6. Adaptada con permiso de J. Wahren et al., 1975, «Metabolism of glucose, free fatty acids and amino acids during prolonged exercise in man». En Metabolic adaptation to prolonged physical exercise, editado por H. Howald y J. R. Poortmans (Basilea: Birkhäuser Verlag), 146, 147.
Figura 6.3. Adaptada con permiso de European Journal of Applies Physiology, Influence of prolonged physical exercise on the erythropoietin concentration in blood, J. Schwandt et al., vol. 63, págs. 463-466, 1991, © Springer-Verlag Gmbh & CO.KG.
Figura 6.6. Reproducida con permiso de M. N. Sawka et al., 2000, «Blood volume: importance and adaptation to exercise training, environmental stresses, and trauma/sickness», Medicine and Science of Sports & Exercise 32: 332-348.
Figura 6.10. Adaptada con permiso de T. Clausen y M. E. Everts, 1991, «K+–induced inhibition of contractile force in rat skeletal muscle: role of active Na+ + –K+ + transport», American Journal of Physiology 30: C791-C807.
Tabla 7.2. Adaptada con permiso de E. Hultman y R. C. Harris, 1988, Carbohydrate metabolism. En: Principles of exercise biochemistry (Basilea, Suiza: S. Karger), 78-119. Adaptada con permiso de E. Hultman et al., 1990, Energy metabolism and fatigue. En: Biochemistry of Exercise VII (Champaign, IL: Human Kinetics), 74.
Tabla 7.3. Reproducida con permiso de B. Saltin, 1990, Anaerobic capacity: past, present and prospective. En: Biochemistry of Exercise VII (Champaign, IL: Human Kinetics), 406.
Figura 7.4, 9.8, 9.14. Reproducidas con permiso de W. Kindermann, 1986, «Ausdruck einer vegetativen Fehlsteuerung», Deutche Zeitschrift für Sportmedizin 37: 238-245.
Figura 7.5 Reproducida con permiso de A. Urhausen et al., 1993, «Individual anaerobic threshold and maximum lactate steady state», International Journal of Sports Medicine 14: 134-129.
Figura 7.7. Reproducida con permiso de E. Horton y R.L. Terjung, 1988, Dietary intake prior to and after exercise. En: Exercise, nutrition, and energy metabolism (Nueva York: McGraw-Hill Companies), 134.
Tabla 7.4. Adaptada con permiso de G. Neumann, 1992, Cycling. En: Endurance in sport, editado por R. J. Shephard y P.–O. Åstrand (Oxford, R. U.: Blackwell Sciences Publication), 582-596.
Tabla 7.7. Adaptada con permiso de H. Liesen, 1985, «Trainingsteigerung im Hochleistungsport: einge Aspekte und Beispiele», Deutsche Zeitschrift für die Sportmedizin 1: 8-18. Adaptada con permiso de E. Hultman et al., 1990, Energy metabolism and fatigue. En: Biochemistry of Exercise VII (Champaign, IL: Human Kinetics), 74.
Tabla 7.8. Adaptada con permiso de A. Urhausen, A. B. Coen y W. Kindermann, 2000. «Individual assessment of the aerobic-anaerobic transition by measurements of blood lactate». En: Exercise and sport science, ed. W. E. Garrett y D. T. Kirkendall (Filadelfia: Lippincott, Williams and Wilkens), 267-275.
Figura 7.13, 8.5. Reproducida con permiso de G. Neumann, 1992, Cycling. En: Endurance in sport, editado por R. J. Shephard y P.–O. Åstrand (Oxford, R. U.: Blackwell Sciences Publication), 582-596.
Figura 7.16. Reproducida con permiso de European Journal of Applies Physiology, Steroid and pituitary hormone responses to rowing exercising: realtive significance of exercise intensity and duration and performance, V. Snegovskaya y A. Viru, vol. 67, págs. 59-65, 1993 © Springer-Verlag Gmbh & CO.KG.
Figura 7.17, 9.11. Reproducidas con permiso de Lehmann et al., 1989, Sur Bedeutung von Katecholamin – und Adrenorezeptorvehalten für Leistungsdiagnostik and Trainingsbegleitung (Münster, Alemania: Philippka-Sportverlag), 15, 19.
Figura 8.2. Reproducida con permiso de A. Viru et al., 1992, «3-Methylhistidine excretion in training for improved power and strength», Sports Medicine Training and Rehabilitation 3: 183-193.
Figura 8.7. Reproducida con permiso de V. Oopik y A. Viru, 1992, «Changes of protein metabolism in skeletal muscle in response to endurance training», Sports Medicine, Training and Rehabilitation 3 (1): 55-64.
Figura 8.8. Reproducida con permiso de R. H. T. Edwards, 1983, Biochemical bases of fatigue in exercise performance: catastrophy theory of muscular fatigue. En: Biochemistry of Exercise (Champaign, IL: Human Kinetics), 6.
Figura 9.6. Reproducida con permiso de V. Snegovskaya y A. Viru, 1993, «Elevation of cortisol and growth hormone levels in the course of further improvement of performance capacity in trained rowers», International Journal of Sports Medicine 14: 202-206. Georg Thieme Verlag.
Figura 9.9. Adaptada con permiso de B. B. Pershin et al., 1988, «Reserve potential of immunity», Sports Training Medicine and Rehabilitation 1 (1): 55.