Читать книгу Secondary Metabolites of Medicinal Plants - Bharat Singh - Страница 48

References

Оглавление

1 Agrawal, A., Sharma, M., Rai, S.K. et al. (2008). The effect of the aqueous extract of the roots of Asparagus racemosus on hepatocarcinogenesis initiated by diethylnitrosamine. Phytother. Res. 22: 1175–1182.

2 Ahmad, S., Ahmad, S., and Jain, P. (1991). Chemical examination of Shatavari (Asparagus racemosus). Bull. Medico. Ethnobot. Res. 12: 157–160.

3 Bopana, N. and Saxena, S. (2007). Asparagus racemosus – ethnopharmacological evaluation and conservation needs. J. Ethnopharmacol. 110: 1–15.

4 Dartsch, P.C. (2008). The potential of Asparagus-P® to inactivate reactive oxygen radicals. Phytother. Res. 22: 217–222.

5 Fennell, C.W., Lindsey, K.L., McGaw, L.J. et al. (2004). Assessing African medicinal plants for efficacy and safety: pharmacological screening and toxicity. J. Ethnopharmacol. 94: 205–217.

6 Goel, R. and Sairam, K. (2002). Anti-ulcer drugs from indigenous sources with emphasis on Musa sapientum, tamrahbasma, Asparagus racemosus and Zingiber officinale. Indian J. Pharmacol. 34: 100–110.

7 Goyal, R.K., Singh, J., and Lal, H. (2003). Asparagus racemosus – an update. Indian J. Med. Sci. 57: 408–414.

8 Gyulai, G., Janovszky, J., Kiss, E. et al. (1992). Callus initiation and plant regeneration from inflorescence primordia of the intergeneric hybrid Agropyron repens (L.) on a modified nutritive medium. Plant Cell Rep. 11: 366–369.

9 Handa SS, Suri OP, Gupta VN, Suri KA, Satti NK, Bhardwaj V, Bedi KL, Khajuria A, Kaul A, Parikh GG. 2003. Process for the isolation of novel oligospirostanoside. US Patent 6,670,459.

10 Hayes, P.Y., Jahidin, A.H., Lehmann, R. et al. (2006). Structural revision of shatavarins I and IV, the major components from the roots of Asparagus racemosus. Tetrahedron Lett. 47: 6965–6969.

11 Hayes, P.Y., Jahidin, A.H., Lehmann, R. et al. (2008). Steroidal saponins from the roots of Asparagus racemosus. Phytochemistry 69: 796–804.

12 Huang, X. and Kong, L. (2006). Steroidal saponins from roots of Asparagus officinalis. Steroids 71: 171–176.

13 Hussain, A., Ahmad, M.P., Wahab, S. et al. (2011). A review on pharmacological and phytochemical profile of Asparagus racemosus Willd. Pharmacologyonline 3: 1353–1364.

14 Islam, M.S., Mia, M., Apu, M.A.I. et al. (2015). A comprehensive review on region based traditional Ayurvedic practitioner's plants secondary metabolites and their phytochemical activities in Bangladesh. J. Pharmacogn. Phytochem. 3: 202–216.

15 Jang, D.S., Cuendet, M., Fong, H.H. et al. (2004). Constituents of Asparagus officinalis evaluated for inhibitory activity against cyclooxygenase-2. J. Agric. Food. Chem. 52: 2218–2222.

16 Kanwar, S.A. and Bhutani, K.K. (2010). Effects of Chlorophytum arundinaceum, Asparagus adscendens and Asparagus racemosus on pro-inflammatory cytokine and corticosterone levels produced by stress. Phytother. Res. 24: 1562–1566.

17 Kar, D.K. and Sen, S. (1985). Propagation of Asparagus racemosus through tissue culture. Plant Cell Tiss. Org. Cult. 5: 89–95.

18 Kelmanson, G.E., Jäger, A.K., and Van Staden, J. (2000). Zulu medicinal plants with antibacterial activity. J. Ethnopharmacol. 69: 241–246.

19 Khan, K.M., Nahar, L., Mannan, A. et al. (2017). Liquid chromatography mass spectrometry analysis and cytotoxicity of Asparagus adscendens roots against human cancer cell lines. Pharmacogn. Mag. 13: 890–894.

20 Kumeta, Y., Maruyama, T., Wakana, D. et al. (2012). Chemical analysis reveals the botanical origin of shatavari products and confirms the absence of alkaloid asparagamine A in Asparagus racemosus. J. Nat. Med. 67: 1–6.

21 Mandal, C., Nandy, A., Pal, M., and Saha, B.P. (2000). Evaluation of antibacterial activity of Asparagus racemosus Willd. Root. Phytother. Res. 14: 118–119.

22 Mandal, D., Banerjee, S., Mondal, N.B. et al. (2006). Steroidal saponins from the fruits of Asparagus racemosus. Phytochemistry 67: 1316–1321.

23 Massika, P.J. and Afolayan, A.J. (2002). Antimicrobial activity of some plants used for the treatment of livestock diseases in the Eastern Cape, South Africa. J. Ethnopharmacol. 83: 129–134.

24 Negi, J.S., Singh, P., Joshi, G.P. et al. (2010). Chemical constituents of Asparagus. Pharmacogn. Rev. 4: 215–220.

25 Ntsoelinyane, P.-M.-A.H. and Mashele, S. (2014). Phytochemical screening, antibacterial and antioxidant activities of Asparagus laricinus leaf and stem extracts. Bangladesh J. Pharmacol. 9: 10–14.

26 Pandey, S.K., Sahay, A., Pandey, R.S., and Tripathi, Y.B. (2005). Effect of Asparagus racemosus (Shatavari) rhizome on mammary gland and genital organs of pregnant rat. Phytother. Res. 19: 721–724.

27 Pise, M., Rudra, J., Begde, D. et al. (2013). Elicitor induced production of shatavarins in the cell cultures of Asparagus racemosus. Indian J. Plant Sci. 2: 100–106.

28 Pise, M., Rudra, J., Bundale, S. et al. (2011). Shatavarin production from in vitro cultures of Asparagus racemosus Wild. J. Med. Plants Res. 5: 507–513.

29 Pise, M., Rudra, J., Bundale, S. et al. (2012). Asparagus racemosus cell cultures: A source for enhanced production of shatavarins and sarsapogenin. In Vitro Cell. Dev. Biol. -Plant 48: 85–91.

30 Pise, M. and Upadhyay, A. (2015). Medium alkalinization and induction of phenylalanine ammonia lyase are involved in the early responses of UV-B mediated hyperproduction of shatavarin. Int. J. Curr. Res. Acad. Rev. 3: 153–160.

31 Pise, M.V., Rudra, J.A., and Upadhyay, A. (2015). Immunomodulatory potential of shatavarins produced from Asparagus racemosus tissue cultures. J. Nat. Sci. Biol. Med. 6: 415–420.

32 Potduang, B., Meeploy, M., Giwanon, R. et al. (2008). Biological activities of Asparagus racemosus. Afr. J. Tradit. Complement. Altern. Med. 5: 230–237.

33 Sabde, S., Bodiwala, H.S., Karmase, A. et al. (2011). Anti-HIV activity of Indian medicinal plants. J. Nat. Med. 65: 662–669.

34 Sahu, M., Gupta, S., and Srivastava, P. (2002). Effect of Renalka syrup in urinary tract infection. Indian Pract. 55: 101–106.

35 Saxena, V.K. and Choubasia, S. (2000). 5-Hydroxy-3,6,4′- trimethoxyflavone-7-O-β-D-glucopyranosyl-[1→4]-O-α-D-xylopyranoside from leaves of Asparagus racemosus. J. Inst. Chem. (India) 6: 211–213.

36 Sekine, T., Fukasawa, N., Murakoshi, I., and Ruangrungsi, N. (1997). A 9,10-dihydrophenanthrene from Asparagus racemosus. Phytochemistry 44: 763–764.

37 Sekine, T., Ikegami, F., Fukasawa, N. et al. (1995). Structure and relative stereochemistry of a new polycyclic alkaloid, asparagamine A, showing anti-oxytocin activity, isolated from Asparagus racemosus. J. Chem. Soc. Perkin Trans. 10: 391–393.

38 Sharma, M., Sharma, A., and Kumar, A. (2012). Vital medicine Asparagus racemosus willd. Curr. Trends Biotechnol. Pharm. 6: 210–221.

39 Sharma, P., Chauhan, P.S., Dutt, P. et al. (2011). A unique immuno-stimulant steroidal sapogenin acid from the roots of Asparagus racemosus. Steroids 76: 358–364.

40 Sharma, U., Kumar, N., Singh, B. et al. (2009b). Immunomodulatory active steroidal saponins from Asparagus racemosus. Med. Chem. Res. 121: 1–7.

41 Sharma, U., Saini, R., Kumar, N., and Singh, B. (2009a). Steroidal saponins from Asparagus racemosus. Chem. Pharm. Bull. 57: 890–893.

42 Shimoyamada, M., Suzuki, M., Sonta, H. et al. (1990). Antifungal activity of the saponin fraction obtained from Asparagus officinalis L. and its active principle. Agric. Biol. Chem. 54: 2553–2557.

43 Singla, R., Kaur, R., Arora, S., and Jaitak, V. (2013). In-vitro antimutagenic activity of Asparagus racemosus: an ayurvedic medicinal plant. Am. J. Drug Discovery Dev. 3: 1–7.

44 Thatte, U.M., Chhabria, S.N., Karandikar, S.M., and Dahanukar, S.A. (1987). Protective effects of Indian medical plants against cyclophosphamide neutropenia. J. Postgrad. Med. (JPGM) 33: 185–188.

45 Tsutomu, I. and Katsuko, N. (1987). Effects of phosphate concentration on growth in Mirabilis jalapa cultured cells. Agric. Biol. Chem. 51: 2611–2612.

46 Uma, B., Prabhakar, K., and Rajendran, S. (2009). Anticandidal activity of Asparagus racemosus. Indian J. Pharm. Sci. 71: 342–343.

47 Venkatesan, N., Thiyagarajan, V., Narayanan, S. et al. (2005). Anti-diarrhoeal potential of Asparagus racemosus wild root extracts in laboratory animals. J. Pharm. Pharm. Sci. 8: 39–46.

48 Visavadiya, N.P. and Narasimhacharya, A. (2009). Asparagus root regulates cholesterol metabolism and improves antioxidant status in hypercholesteremic rats. Evid. Based Complement. Alternat. Med. 6: 219–226.

49 Visavadiya, N.P. and Narasimhacharya, R.L. (2005). Hypolipidemic and antioxidant activities in Asparagus racemosus in hypercholesteremic rats. Indian J. Pharmacol. 37: 376–380.

50 Wiboonpun, N., Phuwapraisirisan, P., and Tip-pyang, S. (2004). Identification of antioxidant compound from Asparagus racemosus. Phytother. Res. 18: 771–773.

51 Wu, J.J., Cheng, K.W., Zou, X.F. et al. (2010). Steroidal saponins and ecdysterone from Asparagus filicinus and their cytotoxic activities. Steroids 75: 734–739.

52 Zhou, L.B. and Chen, D.F. (2008). Steroidal saponins from the roots of Asparagus filicinus. Steroids 73: 83–87.

53 Zhou, L.B., Chen, T.H., Bastow, K.F. et al. (2007). Filiasparosides A–D, cytotoxic steroidal saponins from the roots of Asparagus filicinus. J. Nat. Prod. 70: 1263–1267.

54 Zhu, G.-L., Hao, Q., Li, R.-T., and Hai-Zhou, L. (2014). Steroidal saponins from the roots of Asparagus cochinchinensis. Chin. J. Nat. Med. 12: 213–217.

Secondary Metabolites of Medicinal Plants

Подняться наверх