Читать книгу Математические модели в естественнонаучном образовании. Том I - Денис Владимирович Соломатин - Страница 9

Глава 2. Линейные модели структурированных популяций

Оглавление

В предыдущей главе рассматривалась модель линейного разностного уравнения , которая приводит к экспоненциальному возрастанию или убыванию. После критики этой модели за недостаточную реалистичность, рассмотрели нелинейные модели, которые могут приводить к довольно сложной динамике.

Однако есть и другой способ, которым модели в предыдущей главе могли быть упрощенными – если относиться ко всем особям в популяции одинаково. В большинстве популяций на самом деле существует много подгрупп, чье жизненное поведение может быть совершенно разным. Например, у людей уровень смертности у младенцев часто выше, чем у детей старшего возраста. Кроме того, дети до возраста полового созревания ничего не вносят в рождаемость. Даже среди взрослых показатели смертности не являются постоянными, но, как правило, эти показатели растут с возрастом.

В нечеловеческих популяциях различия могут быть более экстремальными. Насекомые проходят через ряд различных этапов жизни, таких как яйцо, личинка, куколка и взрослая особь. Показатели смертности могут сильно варьироваться на разных стадиях, и только взрослые способны к размножению. Растения также могут иметь различные стадии, через которые они проходят, такие как спящие семена, рассада, нецветущие и цветение. Как математическая модель может учитывать структуру подгрупп, которая, как ожидается, будет играть большую роль в определении общего роста или сокращения таких популяций?

Для создания структурированных моделей сосредоточимся на линейных моделях. Даже не прибегая к нелинейным формулам, можно получить представление о том, как могут вести себя популяции с различными возрастными группами или стадиями развития. В конечном счете увидим, что поведение этих новых линейных моделей очень похоже на экспоненциальное возрастание и убывание линейной модели из предыдущей главы, с некоторыми важными и интересными нюансами.

Математические модели в естественнонаучном образовании. Том I

Подняться наверх