Читать книгу Математические модели в естественнонаучном образовании. Том II - Денис Владимирович Соломатин - Страница 3
Глава 5. Построение филогенетических деревьев
5.2. Построение дерева дистанционными методами UPGMA и FM
ОглавлениеПри построении филогенетического дерева таксоны, которые хотим связать, обычно являются теми, которые живут в настоящее время. Есть информация, такая как последовательности ДНК, от терминальных таксонов и нет информации от тех, которые представлены внутренними вершинами. В действительности, даже не знаем, какие внутренние вершины должны существовать, потому что не знаем даже топологию дерева.
Первым классом методов построения филогенетических деревьев, которые обсудим, являются дистанционные методы. Они пытаются построить дерево, используя информацию, которая предположительно описывает общие расстояния между терминальными таксонами вдоль дерева.
Чтобы понять, как получить эти расстояния, представьте, что пытаемся найти эволюционные отношения четырех видов: , , и . Выбирая тот или иной ортологичный участок ДНК из их геномов, получаем и выравниваем последовательности из каждого. Если модель замены оснований Джукса-Кантора, рассмотренная в главе 4, кажется подходящей для имеющихся данных, то вычисляем расстояния Джукса-Кантора между каждой парой последовательностей. Получатся оценки расстояний по дереву, которые сводим в Таблицу 5.2.
В зависимости от данных последовательности могли бы вместо этого принять другую модель подстановки оснований, что привело бы к использованию другой формулы расстояния, такой как в 2-параметрической модели Кимуры или логарифмическое расстояние. Несмотря на это, расстояние, которое вычисляем между последовательностями, считается мерой количества произошедших мутаций. Если бы эти расстояния были точной мерой количества произведенных мутаций, они бы соответствовали между конечными таксонами в найденном метрическом дереве.
Таблица 5.2. Расстояния между таксонами
.45 .27 .53
.40 .50
.62
На самом деле даже не ожидаем найти дерево, которое точно соответствует имеющимся данным; в конце концов, расстояния выводятся из данных последовательности и не должны быть точно правильными. Более того, метод вывода расстояний зависел от модели, которая включала дополнительные предположения, которые, безусловно, не встречаются в реальных организмах. Надеемся, однако, что построенное дерево не будет слишком чувствительно к такого рода ошибкам на больших расстояниях.
Первый метод, который рассматриваем, называется методом среднего расстояния или, более формально, невзвешенным парно-групповым методом с арифметическими средними (UPGMA). Этот метод создает корневое дерево и предполагает наличие молекулярных часов. Самый простой способ понять алгоритм – это ознакомиться с примером его использования.
По приведенной выше таблицы данных выберем два ближайших таксона, и . Поскольку они находятся на расстоянии 0,27 друг от друга, изобразим на рисунке 5.6 каждое ребро с длиной .
Рисунок 5.6. UPGMA; шаг 1.
Затем объединяем и в группу и усредняем расстояния и до каждого отдельного таксона, чтобы получить расстояние от группы до этого таксона. Например, расстояние между группой и равно , а расстояние между и равно . Таким образом, исходная таблица сводится к таблице 5.3.
Таблица 5.3. Расстояния между групп; UPGMA, Шаг 1
.425 .575
.50
Теперь просто повторяем процесс, используя расстояния в таблице 5.3. Поскольку ближайшими таксонами и/или группами в новой таблице являются и , которые находятся на расстоянии 0,425 друг от друга, то получаем рисунок 5.7.
Рисунок 5.7. UPGMA; шаг 2.
Ребро должно иметь длину , в то время как другое новое ребро должно иметь длину , потому что уже есть ребро длины для учета некоторого расстояния между и другими таксонами.
Снова объединив таксоны, формируем группу и вычисляем расстояние от неё до путем усреднения исходных расстояний от до каждого из , и . Это приводит к значению . Обратите внимание, что это не то же самое, что усреднение расстояния от до и до . Поскольку новая таблица расстояний будет иметь это значение в качестве единственной записи, нет необходимости приводить ее. Изобразим рисунок 5.8, считая, что расстояние от корня до равно . Конечное ребро имеет длину. 0625, таким образом, помещаем оставшийся таксон на расстоянии от корня.
Рисунок 5.8. UPGMA; шаг 3.
Как и подозревали, дерево, которое построили для имеющихся данных, не совсем соответствует этим данным. Расстояние на дереве от до , например, равно , хотя по исходным данным должно быть . Тем не менее, расстояния между вершинами построенного дерева, по крайней мере, достаточно близки к расстояниям, указанным в исходных табличных данных.
Если бы было больше таксонов, то пришлось бы сделать больше шагов для завершения процесса UPGMA, но не было бы никаких принципиально новых действий. На каждом шаге объединяем два ближайших таксона или группы вместе, всегда размещая их на равных расстояниях от общего предка. Затем сворачиваем объединенные таксоны в группу, используя усреднение для вычисления расстояния от этой группы до таксонов и групп, которые еще предстоит объединить. Один момент, с которым следует быть особенно осторожным, заключается в том, что при вычислении расстояний между двумя группами нужно усреднить все расстояния от членов одной группы до членов другой – если одна группа имеет членов, а другая имеет членов, придется усреднить расстояний. Каждый шаг алгоритма уменьшает размер таблицы расстояний на единицу, так что после достаточного количества шагов все таксоны объединяются в единое дерево.
Обратите внимание, что предположение о молекулярных часах неявно присутствовала в UPGMA. В примере, когда поместили и на концы ветвей одинаковой длины, предположили, что количество мутаций, которые каждый из них претерпел от своего общего предка, было одинаковым. Метод UPGMA всегда размещает все таксоны на одинаковом расстоянии от корня, так что количество мутаций от корня до любого таксона одинаково.
Вторым рассмотрим алгоритм Фитча-Марголиаша. Этот метод немного сложнее, чем UPGMA, но основан на том же подходе. Тем не менее, попытаемся отказаться от предположения UPGMA о молекулярных часах.
Прежде чем изложить алгоритм, сделаем несколько математических наблюдений. Во-первых, если попытаемся поместить 3 таксона на некорневое дерево, то будет только одна топология, которую необходимо учитывать. Кроме того, для 3 таксонов можем назначить желаемые длины ребер, чтобы точно соответствовать данным. Чтобы убедиться в этом, рассмотрим дерево на рисунке 5.9. Если есть некоторые данные о расстоянии , и , то можно составить систему уравнений , , .
Эти уравнения могут быть решены либо путем записи системы в виде матричного уравнения и нахождения обратной матрицы, либо путем подстановки формулы для одной переменной, полученной из одного уравнения, в другие. Любой способ гарантированно приведёт к следующему решению , , .
Рисунок 5.9. Некорневое 3-таксонное дерево.
Будем называть эти формулы 3-точечными формулами для подгонки таксонов к дереву. К сожалению, с более чем 3 таксонами точная подгонка данных к дереву обычно невозможна. Однако алгоритм Фитча-Марголиаша (кратко называемый в таблицах как FM) использует случай 3 таксонов для обработки большего количества таксонов. Теперь объясним работу алгоритма на примере. Будем использовать данные о расстоянии, приведенные в таблице 5.4.
Таблица 5.4. Расстояния между таксонами
.31 1.01 .75 1.03
1.00 .69 .90
.61 .42
.37
Начинаем с выбора ближайшей пары таксонов для присоединения, как это делали в UPGMA. Глядя на таблицу расстояний, и являются первой парой, которая соединится. Чтобы соединить их, не помещая их на равное расстояние от общего предка, временно сводим задачу к случаю 3-таксонов, объединяя все остальные таксоны в группу. Таким образом, для имеющихся данных вводим группу . Находим расстояние от каждого из и до группы, усредняя их расстояния до каждого члена группы. Таким образом, расстояние от до равно , в то время как от до оно равно . Это дает таблицу 5.5.
Таблица 5.5. Расстояния между группами; FM-алгоритм, шаг 1a
.31 .93
.863
Имея только три таксона в этой таблице, можем точно подогнать данные к дереву, используя 3-точечные формулы, чтобы получить рисунок 5.10. Ключевым моментом здесь является то, что 3-точечные формулы, в отличие от UPGMA, могут давать неравные расстояния таксонов от общего предка.
Рисунок 5.10. FM-алгоритм; шаг 1.
Теперь оставляем только ребра, заканчивающиеся в и на рисунке 5.10, и возвращаемся к исходным данным. Помните, что группа была нужна только временно, чтобы могли использовать 3-точечные формулы; пока не собирались объединять эти таксоны. Однако, поскольку объединили и , объединяем их в группу для остальной части алгоритма, как сделали бы с UPGMA. Это формирует таблицу 5.6.
Таблица 5.6. Расстояния между группами; FM-алгоритм, шаг 1b
1.005 .72 .965
.61 .42
.37
Снова ищем ближайшую пару (теперь это и ) и соединяем их аналогичным образом. Объединяем все, кроме и , в одну временную группу и вычисляем расстояния и . Полученными значениями заполняем таблицу 5.7. Применение трехточечной формулы к таблице 5.7 дает рисунок 5.11.
Таблица 5.7. Расстояния между группами; FM-алгоритм, шаг 2a
.683 .783
.37
Рисунок 5.11. FM-алгоритм; шаг 2.
Оставляем ребра инцидентные с и на рисунке 5.11, отбрасывая ребро, ведущие к временной группе . Таким образом, теперь есть две объединенные группы, и . Чтобы вычислить новую таблицу, содержащую эти две найденные группы, усредняем расстояния и . Выше уже вычислили , поэтому получаем таблицу 5.8.
Таблица 5.8. Расстояния между группами; FM-алгоритм, шаг 2b
1.005 .8425
.515
На этом этапе можем получить итоговое дерево по таблице путем окончательного применения 3-точечных формул, что дает рисунок 5.12.
Рисунок 5.12. FM-алгоритм; шаг 3.
Теперь заменяем группы на этой последней диаграмме шаблонами ветвления, которые уже нашли ранее. Это дает рисунок 5.13.
Последним шагом является заполнение оставшихся длин и , используя длины, показанные на рисунке 5.12. Так как и в среднем дают расстояние от соединяющей их вершины, а и находятся в среднем на от соединяющей их вершины, то и получаем для присвоения длин оставшимся ребрам.
Рисунок 5.13. FM-алгоритм; завершение.
Обратите внимание, что одно ребро оказалось отрицательной длины. Поскольку этого не может быть, многие на практике предпочли бы просто переопределить длину в 0. Однако, если это произойдет, то должны будем по крайней мере проверить, что отрицательная длина была близка к 0, иначе придётся беспокоиться о качестве используемых данных.
Хотя на первый взгляд это может показаться странным, но как алгоритм Фитча-Марголиаша, так и UPGMA будут создавать точно такое же топологическое дерево при применении к набору данных. Причина этого заключается в следующем: при принятии решения о том, к каким таксонам или группам присоединиться на каждом шаге, оба метода учитывают точно такую же свернутую таблицу данных и оба выбирают пару, соответствующую наименьшей записи в таблице. Отличаться будут только метрические характеристики результирующих деревьев. Это немного подрывает надежду на то, что FM-алгоритм лучше, чем UPGMA. Хотя это может привести к лучшему метрическому дереву, но топологически оно никогда не отличается.
Фитч и Марголиаш в 1967 году фактически предложили свой алгоритм не как самоцель, а скорее, как эвристический метод получения дерева, которое, вероятно, будет иметь определенное свойство оптимальности, о чем еще поговорим в ходе решения связанных с этим задач. Рассматриваем его здесь, как и UPGMA, в качестве шага на пути к изложению алгоритма из следующего раздела. Знакомство с UPGMA и FM-алгоритмом поможет понять более сложный метод.
Конечно, и UPGMA, и FM-алгоритм лучше выполнять компьютерными программами, чем вручную. Тем не менее, несколько ручных расчетов необходимо выполнить, чтобы полностью понять, как функционируют методы и какие предположения в них входят.
Хотя алгоритм Фитча-Марголиаша позволил получить неравные длины ветвей в деревьях, за это заплатили высокую цену – построенные деревья оказываются некорневыми. Однако, поскольку поиск корня часто желателен, возникает необходимость обойти этот недостаток.
При применении любого метода филогенетического дерева, который дает некорневое дерево, может быть включен дополнительный таксон. Этот дополнительный таксон выбран так, чтобы было известно, что он более отдаленно связан с каждым из представляющих интерес таксонов, чем они связаны друг с другом, и присоединяется как внешняя группа. Например, если пытаемся связать разные виды уток друг с другом, то можем включить другой тип птиц в качестве внешней группы. Как только дерево без корней построено, находим корень такой, чтобы ребро из внешней группы соединялось с остальной частью дерева. Информация о том, что внешняя группа должна была отделена от других таксонов до того, как они отделились друг от друга, помогает определить место корня на дереве общего предка.
Задачи для самостоятельного решения:
5.2.1. Для дерева на рисунке 5.8, построенного методом UPGMA, вычислите таблицу расстояний между таксонами вдоль дерева. Как это соотносится с исходной таблицей данных расстояний?
5.2.2. Предположим, что четыре последовательности , , и ДНК разделены филогенетическими расстояниями, как показано в таблице 5.9. Создайте корневое дерево, показывающее отношения между , , и с помощью UPGMA.
Таблица 5.9. Данные о расстоянии для задач 5.2.2 и 5.2.5
1.2 .9 1.7
1.1 1.9
1.6
5.2.3. Выполните UPGMA для данных расстояния в таблице 5.4, которые были использованы в примере FM-алгоритма. Производит ли UPGMA топологически то же дерево, что и алгоритм FM? А метрически?
5.2.4. FM-алгоритм использует тот факт, что данные о расстоянии, относящиеся к трем терминальным таксонам, могут быть точно подогнаны по одному некорневому дереву, относящемуся к ним.
а. Выведите 3-точечных формулы, приведенные в разделе.
б. Если расстояния равны , и , то каковы длины , и ?
5.2.5. Используйте FM- алгоритм для построения некорневого дерева на данных в таблице 5.9, которая также использовалась в задаче 5.2.2. Насколько отличается получившийся результат?
5.2.6. Предположим, что три терминальных таксона связаны некорневым метрическим деревом.
а. Если три длины ребер равны 0.1, 0.2 и 0.3, объясните, почему гипотеза молекулярных часов должна быть неверной, независимо от того, где находится корень.
б. Если длины трех ребер равны 0.1, 0.1 и 0.2, объясните, почему гипотеза о молекулярных часах может быть верной. В случае, когда гипотеза оказывается верна, где должен находиться корень?
в. Если три длины ребер равны 0.1, 0.2 и 0.2, объясните, почему гипотеза молекулярных часов должна быть неверной, независимо от того, где находится корень.
5.2.7. В то время как данные о расстоянии для 3 терминальных таксонов могут точно соответствовать дереву без корней, при наличии 4 (или более) таксонов это обычно невозможно.
а. Нарисуйте некорневое дерево с терминальными таксонами A, B, C и D. Обозначьте длины пяти ребер .
б. Используя для расстояния между терминальными таксонами обозначения типа , запишите уравнения для каждого из 6 таких расстояний выраженных через . Объясните, почему, если даны числовые значения расстояний между терминальными таксонами, эти уравнения вряд ли будут иметь точное решение.
в. Приведите такой конкретный пример значений 6 расстояний между терминальными таксонами, чтобы уравнения в части (б) не могли иметь точного решения. Приведите еще один пример значений, для которых уравнения могут быть решены.
5.2.8. Известен ряд различных мер для оценки степени согласованности между данными о расстояниях и метрическими деревьями. Пусть обозначает расстояние между таксонами и , полученное из экспериментальных данных, а обозначает расстояние, полученное при обходе от до вдоль дерева. Во второй половине прошлого века были предложены следующие три меры:
(Фитч и Марголиаш, 1967)
(Фаррис, 1972)
(Татено и др. , 1982)
Во всех этих мерах суммы включают слагаемые для каждой отдельной пары таксонов и .
а. Вычислите эти меры для дерева, построенного в разделе, используя FM- алгоритм, а также дерева, построенного из тех же данных с помощью UPGMA в задаче 5.2.3. Согласно каждому из этих показателей, какое из двух деревьев лучше подходит для данных?
б. Объясните, почему эти формулы разумно использовать для оценки соответствия. Объясните, как различия между формулами делают их более или менее чувствительными к различным типам ошибок.
Примечание: Фитч и Марголиаш предложили выбрать оптимальное метрическое дерево для соответствия данным как такое, которое минимизирует . Алгоритм FM был введен в попытке получить аппроксимацию оптимального дерева.
5.2.9. Смоделируйте данные a1, a2, a3 и a4 в соответствии с моделью Джукса-Кантора с молекулярными часами. Сохраните их в файл seqdata.mat путём ввода save seqdata.mat. Загрузите ранее сохраненные данных из файла seqdata.mat в MATLAB путем ввода load seqdata. Затем исследуйте производительность UPGMA с расстоянием Джукса-Кантора, чтобы построить дерево для последовательностей a1, a2, a3 и a4. Все расстояния между последовательностями можно легко вычислить, поместив последовательности в строки массива с помощью команды a=[a1;a2;a3;a4], а затем используя команду [DJC DK2 DLD]=distances(a). Хотя эта команда вычисляет расстояния, используя каждую из формул Джукса-Кантора, 2-параметрической модели Кимуры и формул логарифмического расстояния, для решения этой задачи используйте только расстояния Джукса-Кантора.
а. Нарисуйте дерево UPGMA для 4 таксонов, пометив каждое его ребро длиной.
б. По длинам ребер вычислите расстояния между таксонами при обходе вдоль дерева. Близки ли они к исходным расстояниям?
5.2.10. Повторите решение предыдущей задачи, но используя алгоритм FM вместо UPGMA. Является ли дерево, которое получится в результате, «лучше», чем то, которое получалось раньше? Объясните почему.
5.2.11. Смоделируйте данные b1, b2, b3, b4 и b5 в соответствии с моделью Джукса-Кантора, но без молекулярных часов. Сохраните их в файле seqdata.mat. Исследуйте возможность применения UPGMA с расстоянием Джукса-Кантора для построения дерева для последовательностей b1, b2, b3, b4 и b5 в файле данных seqdata.mat. Полезные команды MATLAB см. в задаче 5.2.9.
а. Нарисуйте дерево UPGMA для 5 таксонов, пометив каждое ребро его длиной.
б. По длинам ребер вычислите расстояния между таксонами вдоль дерева. Близки ли они к исходным данным?
5.2.12. Повторите решение предыдущей задачи, но используя алгоритм FM вместо UPGMA. Является ли дерево, которое получилось в результате, «лучше», чем то, которое было получено ранее? Объясните почему.
5.2.13. Построение дерева с помощью UPGMA предполагает молекулярные часы. Предположим, что некорневое метрическое дерево на рисунке 5.14 правильно описывает эволюцию таксонов A, B, C и D.
Рисунок 5.14. Дерево для задачи 5.2.13.
а. Объясните, почему, независимо от местоположения корня, молекулярные часы не могли здесь работать.
б. Задайте массив расстояний между каждой парой из четырех таксонов. Выполните UPGMA для этих данных.
в. UPGMA не реконструировала правильное дерево. Что получилось в результате? Что такого было в этом метрическом дереве, что ввело алгоритм в заблуждение?
г. Объясните, почему алгоритм FM также не построит правильное дерево.