Читать книгу Гений. Жизнь и наука Ричарда Фейнмана - Джеймс Глик - Страница 4

Фар-Рокуэй
* * *

Оглавление

Когда-то сборка и пайка радиоприемников представляла собой своеобразный творческий процесс. Теперь этого нет. Искусство ушло из радиолюбительства. Дети забыли, какую радость им доставляла возможность пробраться в кабинет родителей и разорить стоящие там радиоприемники. Теперь же беспорядочно расположенные внутри них лампы, переключатели и другие механизмы заменили компактные электронные блоки. Там, где когда-то можно было познавать мир, дергая спаянные провода и глазея на оранжевый румянец электронных ламп, стоят невыразительные готовые спрессованные микросхемы. Кремниевый транзистор, микроскопический и причудливый, вытеснил постоянно выходящие из строя хрупкие лампы. Так мир потерял протоптанную дорожку в науку.

В 1920-е годы, еще до появления твердотельной электроники, можно было, посмотрев на радиосхему, представить, как через ее элементы побежит поток электронов. Сходство электричества с жидкостью, протекающей по трубам, усиливалось за счет того, что в радиоприемниках использовались электронные лампы и клапаны, направляющие потоки электричества в нужном направлении. Один щелчок переключателя – и раздавалось не похожее ни на что шипение, иногда громкое, иногда едва слышимое. Позже кто-то сказал, что есть два вида физиков: одни в детстве увлекались химическими опытами, других же интересовали радиоприемники. У химии, несомненно, есть свое обаяние, но такой мальчик, как Ричард Фейнман, очарованный диаграммами и графиками, видел в радиосхемах нечто совершенно особенное. Едва научившись читать язык проводов, резисторов, детекторных кристаллов и конденсаторов, он понял, что каждая деталь выполняет свою функцию. Он собрал приемник, подключил к нему огромные наушники, купленные на барахолке, и слушал, забравшись под одеяло, пока не засыпал. Иногда родители подходили к спящему мальчику на цыпочках и снимали с него наушники. Если атмосферные условия позволяли, радиоприемник мог ловить сигналы, идущие издалека – из Скенектади, расположенного на севере Нью-Йорка, или даже из Техаса – со станции Уэйко. Приемник реагировал на прикосновения. Чтобы переключить канал, Ричард перемещал контакт через проволочную катушку. Все-таки радио отличалось от часовых механизмов со всеми их колесиками и шестеренками. Оно уже немного выходило за пределы механического мира. И таинство его было невидимым. Кварцевые кристаллы улавливали волны электромагнитного излучения, несущиеся в эфире.

И в то же время никакого эфира не было. Субстанция, в которой могли бы распространяться эти волны, не существовала. Если бы даже ученые захотели представить радиоволны, распространяющиеся с идеальной периодичностью, как круги на поверхности воды, им пришлось бы признать, что эти волны распространяются в среде, которой в природе нет. Во всяком случае, так считали в эпоху создания теории относительности: Эйнштейн показал, что, если бы эфир существовал, он должен был бы оставаться неподвижным относительно любых наблюдателей, даже двигающихся в разных направлениях. Это невозможно. «Казалось, что эфир скрывался в стране призраков в последней попытке ускользнуть от пытливых поисков физиков», – писал математик Герман Вейль в 1918 году, в том году, когда родился Ричард Фейнман. Но тогда в какой среде распространялись радиоволны, преодолевая расстояние от антенны, расположенной в центре Нью-Йорка, до второго этажа небольшого деревянного каркасного дома Фейнманов на окраине?

В любом случае радиоволны лишь один из множества видов колебаний, разрывающих каждый клочок пространства. И хаотично взаимодействующие световые волны, по природе своей идентичные радиоволнам, но имеющие во много раз меньшие длины волн, и инфракрасные волны, воспринимаемые кожей как ощущение тепла; и зловещие рентгеновские волны; и высокочастотные гамма-лучи с длинами волн меньше размера атома, – все это разные ипостаси одного явления – электромагнитного излучения. И если и до изобретения источников электромагнитного излучения пространство сравнивалось с «электромагнитным Вавилоном», то радиопередатчики, созданные человеком, заполонили его еще больше. Обрывки голосов, случайные щелчки, свисты, странные шумы и звуки, вызванные прохождением радиоволн, проносились друг за другом в пространстве. И все эти волны существовали не в эфире, а в более абстрактной среде, понять природу которой физикам никак не удавалось. Они даже представить не могли, что это такое. Все, что у них было, – название. Электромагнитное поле, или просто поле.

Поле представлялось непрерывной поверхностью или объемом, проходя через который менялась какая-то физическая величина. Поле не вещество, но в то же время оно совершало колебания, вибрировало. Физики обнаружили, что колебания иногда проявляли себя как частицы, но это только еще больше все усложнило. Ведь если бы они были частицами, то должны были бы проявлять волновые свойства. Только в этом случае мальчишки вроде Фейнмана смогли бы настроить свои приемники на определенную длину волны (частоту), каждая из которых приносила «Тень», «Дядю Дона»[25] или рекламу газировки. Научные обоснования были смутными, лишь узкий круг ученых, большинство из которых говорило по-немецки, имел некоторое представление о радиоволнах[26]. Однако для любителей, которые читали в газетах про Эйнштейна и размышляли над простотой устройства радиоприемников, суть этой магии была очевидна.

Многие будущие физики в юности увлекались радио и собирали радиоприемники. И неудивительно, что в то время когда о профессии физика мало кто знал, многие из них мечтали стать инженерами-электриками с хорошими зарплатами. Ритти – так друзья звали Ричарда – был мальчишкой целеустремленным. Он выискивал по окрестностям ламповые приемники и старые аккумуляторные батареи, собирал трансформаторы, переключатели и катушки зажигания. Например, катушка, снятая со старого автомобиля «Форд», могла ярко искриться, прожигая коричневые дырки в газете. Однажды Ритти нашел выброшенный реостат и пропустил через него 110 вольт. Реостат сгорел, а плохо пахнущие дымящиеся остатки Ричард выставил за окно своей спальни, расположенной на втором этаже, так что пепел кружил в воздухе и ложился на газон на заднем дворе. Он всегда так поступал в экстренных случаях. Если едкий запах просачивался в гостиную, где его мама играла в бридж, то это означало, что Ричард вытряхнул содержимое своей мусорной корзины в окно, ожидая, например, когда перестанет вспыхивать то, что осталось от гуталина после его очередного эксперимента. В этот раз он хотел растопить гуталин, чтобы получившейся черной краской покрасить свою «лабораторию» – деревянный ящик размером примерно с холодильник, стоявший в его комнате. К ящику были прикручены разные переключатели и лампочки, которые Ритти соединял последовательно и параллельно. Его сестра, которая была на девять лет младше, с удовольствием подрабатывала ассистентом в его лаборатории за четыре цента в неделю. В ее обязанности входило просовывать палец между электродами и терпеть легкий удар током. Это невероятно забавляло друзей Ритти.

Психологи уже поняли, что дети по сути своей – ученые, которые постоянно пробуют, ошибаются, экспериментируют, исследуют свою маленькую вселенную всеми мыслимыми и немыслимыми способами. У детей и ученых схожие взгляды на жизнь. Что произойдет, если я это сделаю? – девиз детских игр и ученых-физиков. Каждый ребенок – наблюдатель и аналитик. Каждый жаждет описать вещи и явления, выстраивает свои познания в цепочки интеллектуальных открытий, придумывает теории и отбрасывает их, когда они не работают. Непонятное, странное – вот что притягивает детей и ученых. И никто из них не может рассчитывать в полной мере на то, что ему предоставят лабораторию, реостаты или дадут ассистента. Ричард Фейнман был неутомим в желании заполнить свою спальню всеми атрибутами и устройствами, необходимыми для научных экспериментов.

25

Детские радиопередачи 1930–40-х годов ХХ века. Прим. перев.

26

Экспериментально электромагнитные волны открыл немецкий ученый Генрих Герц. Прим. науч. ред.

Гений. Жизнь и наука Ричарда Фейнмана

Подняться наверх